Overview--

Syllabus--

Homework--

Students--

User Guides--

Links--

Contact Info--

Home--
Welcome to the Methods in Computational Neurobiology (PHYSL 317) Course Website. Here you can find information about prerequisites, get homework assignments with solutions, and browse the schedule for upcoming lectures.

--PART I - NEURONAL MODELING: FROM BIOPHYSICS TO BEHAVIOR
Dr. Nelson's Lecture Schedule

DateLecture Number / TopicLinks
N/A0. Introduction to MATLABGuides / HW 0
1/261. Intro / RC circuits (notes)HW 1
2/22. Integrate-and-fire model (slides)HW 2
2/93. Hodgkin-Huxley model (reading) (figs)HW 3
2/164. Synaptic inputs, small networks (slides) HW 4
    QUIZ: Lectures 0-2
2/235. Simple behaviors, phototaxis (slides) HW 5
3/16. Real-world inputs, noise (slides)HW 6
3/87. Adaptive behavior, learning (slides)
    QUIZ: Lectures 3-5

Texts (recommended)

Nelson, M.E. (in press) Electrophysiological Models
In: Databasing the Brain: From Data to Knowledge.
(S. Koslow and S. Subramaniam, eds.) Wiley, New York.
[ preprint ]

Braitenberg, V (1984) Vehicles: Experiments in Synthetic Psychology,
The MIT Press.

Additional resources

Koch, C. and Segev, I (1998) Methods of Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge MA


--PART II - ABSTRACT NETWORK MODELS
Dr. Anastasio's Lecture Schedule (also available as .pdf or .doc)

I. Lateral Inhibition - 3/15
  • Ratliff K, Knight BW, Graham W (1969) On tuning and amplification by lateral inhibition. Proc Natl Acad Sci 62:723-730
  • Didday RL (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci 30:169-180
  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformations of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609-626
II. Self-Organizing Feature Maps - 3/29
  • Malsburg CH von der (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85-100
  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59-69
  • Obermayer K, Ritter H, Schulten K (1990) A principle for the formation of the spatial structure of cortical feature maps. Proc Natl Acad Sci 87:8345-8349
III. Hopfield Networks - 4/5
  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective abilities. Proc Natl Acad Sci 79:2554-2558
  • Hopfield JJ (1984) Neurons with graded response have collective properties like those of two-state neurons. Proc Natl Acad Sci 81:3088-3092
  • Rolls ET (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO (Eds) Neural models of plasticity: experimental and theoretical approaches. Academic Press, San Diego, pp 240-265
IV. Back-Propagation - 4/12
  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, PDP Research Group (Eds) Parallel distributed processing: explorations in the microstructure of cognition: vol 1: foundations. MIT Press, Cambridge, pp 318-362
  • Anastasio TJ, Robinson DA (1989) the distributed representation of vestibulo-oculomotor signals by brain-stem neurons. Biol Cybern 61:79-88
  • Zipser D, Anderson RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679-684
V. Genetic Algorithms - 4/19
  • Holland JH (1992) Adaptation in natural and artificial systems. MIP Press, Cambridge, ch 1
  • Happel BL, Murre JMJ (1994) Design and evolution of modular neural network architectures. Neural Networks, 7:985-1004
  • Schaffer JD, Caruana RA, Eshelman LJ (1990) Using genetic search to exploit the emergent behavior of neural networks. Physica D 42:244-248
VI. Temporal Difference Learning - 4/26
  • Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learning 3:9-44
  • Barto AG (1995) Adaptive critics and the basal ganglia. In: Houk JC, Davis JL, Beiser DG (Eds) Models of information processing in the basal ganglia. The MIT Press, Cambridge, ;; 215-232
  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936-1947
VII. Recurrent Back-Propagation - 5/5
  • Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comp 1:270-280
  • Anastasio TJ (1991) Neural network models of velocity storage in the horizontal vestibulo-ocular reflex. Biol Cybern 64:187-196
  • Zipser D (1991) Recurrent network model of the neural mechanisms of short-term active memory. Neural Comp 3:179-193
Suggested Textbooks
  • Beal R, Jackson T (1990) Neural computing: an introduction. Institute of Physics Publishing, Bristol, UK
  • Churchland PS, Sejnowski TJ (1992) The computational brain. MIT Press, Cambridge
  • Haykin S (1999) Neural networks: a comprehensive foundation. second edition. Prentice Hall, Upper Saddle River







--QUICK LINKS
Part I: NELSON

Part II: ANASTASIO






Copyright © 2003 University of Illinois at Urbana-Champaign. All rights reserved.