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Hodgkin-Huxley Models

The core mahematicd framework for modern biophyscaly based neurd modding was
developed hdf a century ago by Sir Alan Hodgkin and Sir Andrew Huxley. They carried out an
elegant series of dectrophysiologicd experiments on the squid giant axon in the late 1940s and
early 1950s. The squid giant axon is notable for its extraordinaily large diameter (~0.5 mm).
Mogt axons in the squid nervous system and in other nervous systems are typicaly at least 100
times thinner. The large Sze of the squid giant axon is a specidizaion for rgpid conduction of
action potentids that trigger the contraction of the squid's mantle when escaping from a
predator. In addition to being beneficid for the squid, the large diameter of the giant axon was
beneficid for Hodgkin and Huxley because it permitted manipulations that were not technicdly
feesble in smaler axons that had been used in biophyscd sudies up to that point. In a wdl-
desgned series of experiments, Hodgkin and Huxley sysematicdly demonsrated how the
macroscopic ionic currents in the squid giant axon could be understood in terms of changes in
Na" and K* conductances in the axon membrane. Based on a series of voltage-damp
experiments, they developed a detalled mathematicd modd of the voltage-dependent and time-
dependent properties of the Na' and K™ conductances. The empiricd work lead to the
development of a coupled st of differentid equations describing the ionic basis of the action
potential  (Hodgkin and Huxley, 1952), which became known as the Hodgkin-Huxley (HH)
modd. The red predictive power of the modd became evident when Hodgkin and Huxley
demondrated that numericad integration of these differentid equations (usng a hand-cranked
mechanicad caculator!) could accurately reproduce al the key biophysical properties of the
action potentid. For this outstanding achievement, Hodgkin and Huxley were awarded the 1963
Nobd Prize in Physology and Medicine (shared with Sr John Eccles for his work on the
biophysicd bagis of synaptic transmisson).

Electrical equivalent circuits

In biophyscdly based neura modding, the eectricd propeties of a neuron ae
represented in terms of an eectrica equivaent circuit. Capacitors are used to modd the charge
gorage cepacity of the cdl membrane, resistors are used to modd the various types of ion
chamnels embedded in membrane, and batteries are used to represent the dectrochemical
potentias edtablished by differing intra and extracdlular ion concentrations. In their semind
paper on the biophysicd bass of the action potential, Hodgkin and Huxley (1952) modeled a
segment of squid giant axon ugng an equivdent drcuit dmilar to that shown in Fg. 1. In the
equivdent circuit, the current across the membrane has two mgor components, one associated
with the membrane capacitance and one associated with the flow of ions through redgtive
membrane channds. The capacitive current | is defined by the rate of change of charge q a the
membrane surface | = dg/dt. The charge q(t) is rdated to the ingantaneous membrane voltage
Vm(t) and membrane capacitance C, by the rdationship q = G,Vim. Thus the capacitive current
can be rewritten as I = Cy, dVy/dt. In the Hodgkin-Huxley modd of the squid axon, the ionic
current lion IS subdivided into three didinct components, a sodium current Iy, a potassum
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Fig. 1 Electrical equivalent circuit for a short segment of squid giant axon. The capacitor represents the
capacitance of the cell membrane; the two variable resistors represent voltage-dependent Na™ and K*
conductances, the fixed resistor represents a voltage-independent leakage conductance and the three
batteries represent reversal potentials for the corresponding conductances. The pathway labeled “stim’
represents an externally applied current, such as might be introduced via an intracellular electrode. The
sign conventions for the various currents are indicated by the directions of the corresponding arrows.
Note that the arrow for the external stimulus current le is directed from outside to inside (i.e., inward
stimulus current is positive), whereas arrows for the ionic currents lya, Ik and |, are directed from inside

to outside(i.e., outward ionic currentsare positive). After Hodgkin & Huxley (1952).

current Ik, and a smal leakage current I tha is primarily carried by chloride ions. The behavior
of an dectricd circuit of the type shown in Fig. 1 can be described by a differentid equation of

the generd form:

Cm d;/tm + I ion = Ia(t (1)

where legg is an externdly gpplied current, such as might be introduced through an intracdlular
electrode. Equation 1 is the fundamenta equation relating the change in membrane potentid to
the currents flowing across the membrane.

M acr oscopic lonic Currents

The individud ionic currents Ina, Ik and I shown in Fig. 1 represent the macroscopic currents
flowing through a large population of individud ion channds. In HH-style modes, the
macroscopic current is assumed to be reated to the membrane voltage through an Ohm's law
relaionship of the form V=IR. In many cases it iSs more convenient to express this rdationship in
terms of conductance rather than resstance, in which case Ohm's law becomes | = GV, where
the conductance G is the inverse of ressance, G = 1/R In gpplying this rdationship to ion
channels, the equilibrium potentid Ex for each ion type adso needs to be taken into account. This
is the potentid a which the net ionic current flowing across the membrane would be zero. The
equilibrium potentids are represented by the batteries in Fig. 1. The current is proportiona to the
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conductance times the difference between the membrane potentid V., and the equilibrium
potential Ex. The totd ionic current lion is the dgebrac sum of the individud contributions from
al participating channd types found in the cell membrane:

Iion:é.lk:éGk(Vm_Ek) (2)
k k

which expands to the following expression for the Hodgkin-Huxley modd of the squid axon:
Iion:GNa(Vm- ENa)+GK(\/m- EK)+GL(\/m- EL) (3)

Note that individud ionic currents can be podtive or negative depending on whether or not the
membrane voltage is aove or bedow the equilibrium potentid. This raises the question of dgn
conventions. Is a pogtive ionic current flowing into or out of the cel? The most commonly used
ggn convention in neurd modding is that ionic current flowing out of the cdl is pogtive and
ionic current flowing into the cdl is negative (see subsection on Sign Conventions for more
details).

In generd, the conductances are not constant values, but can depend on other factors like
the membrane voltage or the intracdlular cacium concentraion. In order to explan ther
experimentad data, Hodgkin and Huxley postulated that Gna and Gy were voltage-dependent
quantities, whereas the leakage current G| was taken to be congtant. Thus the resistor symbols in
Fig. 1 are shown as variable resstors for Gna and Gk, and as a fixed resstor for G.. Today, we
know that the voltage-dependence of Gna and Gk can be rdated to the biophysica properties of
the individud ion channds tha contribute to the macroscopic conductances. Although Hodgkin
and Huxley did not know about the properties of individud membrane channeds when they
developed their modd, it will be convenient for us to describe the voltage-dependent aspects of
their modd in those terms,

Gates

The macroscopic conductances of the HH model can be consdered to arise from the
combined effects of a large number of microscopic ion channels embedded in the membrane.
Each individud ion channd can be thought of as containing one or more physcd gates that
regulate the flow of ions through the channd. An individud gate can be in one of two Saes,
permissive or non-permissive When all of the gates for a particular channd are in the permissve
date, ions can pass through the channd and the channd is open. If any of the gates are in the
non-permissive date, ions cannot flow and the channd is closed. Although it might ssem more
naturd to spesk of gates as being open or closed, a great ded of confuson can be avoided by
condgently usng the terminology permissive and non-permissive for gates while reserving the
terms open and closed for channels.

The voltage-dependence of ionic conductances is incorporated into the HH modd by
assuming that the probability for an individud gete to be in the permissve or non-permissve
date depends on the vaue of the membrane voltage. If we consder gates of a particular type |,
we can define a probability p;, ranging between 0 and 1, which represents the probability of an
individua gate being in the pemissve date. If we consder a large number of channds, rather
than an individua channd, we can adso interpret p; as the fraction of gates in that population that
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are in the pemissive date. At some point in time t, let pi(t) represent the fraction of gates that are
in the permissve state. Consequently 1- p; (t) must be in the non-permissive Sate.

fractionin fractionin

3
non - permissive i{“ggzg permissive
state, 1- p(t) ) state p(t)

The rate a which gates trangtion from the nonpermissve date to he permissve date is
denoted by a variable a;(V), which has units of sec’®. Note that this “rate constant” is not really
constant, but depends on membrane voltage V. Smilarly there is a second rate congtant, b (V)
describing the trangtion rate from the permissve to the nonpermissve date. Trangtions
between permissve and non-permissve dates in the HH mode are assumed to obey first-order
kinetics

%:ai(\/)(l- p)- b (V)p “)

where a;(V) and bi(V) are voltage-dependent. If the membrane voltage Vy, is clamped a some
fixed vdue V, then the fraction of gates in the permissve date will eventudly reach a deady
gate vaue (i.e, dpi/dt = 0) ast>8 given by:

Y )
e e (V) + b, (V)

The time course for gpproaching this equilibrium vaue is decribed by a smple exponentid with
time constant t (V) given by:

Q)

-1
a,(V)+ b, (V)

When an individud channd is open, it contributes some smdl, fixed vaue to the totd
conductance and zero otherwise. The macroscopic conductance for a large population of
channels is thus proportiona to the number of channds in the open dae, which is in turn
proportiond to the probability that the associated gates are in their permissve sate. Thus the
macroscopic conductance Gy due to channds of type k, with condituent gates of type i, is
proportional to the product of theindividud gate probabilities pi:

G = gké P (7)

ti(v) 6)

where @, isanormalization congtant thet determines the maximum possible conductance when
al the channels are open (i.e. al gates are in the permissve date).

We have presented EQgs. 4—7 usng a generdized notation that can be applied to a wide
variety of conductances beyond those found in the squid axon. To conform to the standard
notetion of the HH modd, the probability varigble p; in Egs. 4—7 is replaced by a variable that
represents the gate type. For example, Hodgkin and Huxley modeled the sodium conductance
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using three gates of a type labeled ‘m” and one gate of type ‘h”. Applying Eq. 7 to the sodium
channd usng both the generaized notation and the sandard notation yidds:

GNa = gNa pﬁw ph = gNamSh (8)
Similarly, the potassum conductance is modeed with 4 identica “n” gates:
Gy =TGP, = Oy’ 9)

Summarizing the ionic currents in the HH mode in standard notation, we have:

oo = TPV - Ep) + GV, - E)+ 0, (V- E.) (10)
A=, ()= m)- b,()m (11)
%zah(\/)(l- h)- b,(V)h (12)
S =a, V)@ - b,()n (13)

To completely specify the modd, the one task that remains is to pecify how the gx rate
constants in Egs. 11-13 depend on the membrane voltage. Then Egs. 10-13, together with Eq. 1,
completdy specify the behavior of the membrane potentid Vi, in the HH modd of the squid
giant axon.

Sign Conventions

Note that the agppearance of lion On the left-hand side of Eq. 1 and leq On the right
indicates that they have opposite sign conventions. As the equation is written, a postive externd
current lee Will tend to depolarize the cdl (i.e, make Vi, more postive) while a postive ionic
current lion Will tend to hyperpolarize the cel (i.e, make V., more negative). This Sgn convention
for ionic currents is sometimes refered to a the neurophysiologicd or physiologists
convention.  This convention is conveniently summarized by the phrase “inward negative’,
meaning that an inward flow of pogtive ions into the cel is consdered a negative current. This
convention perhaps arose from the fact that when one studies an ionic current in a voltage clamp
experiment, rather than measuring the ionic current directly, one actudly messures the clamp
current which is necessary to counterbdance it. Thus an inward flow of postive ions is observed
a a negative-going clamp current, hence explaning the “inward negative’ convention. Some
neurd dmulation software packages, such as GENESIS, use the opposte sgn convention
(inward pogtive), snce that alows dl currents to be trested consgently. In the figures shown in
this chapter, membrane currents are plotted using the neurophysiologica convention (inward
negeive).



Nelson, M.E. (2004) Electrophysiological Models In: Databasing the Brain: From Data to Knowledge.
(S. Koslow and S. Subramaniam, eds.) Wiley, New York.

= E = eeiioE
o 3
& B g ape®™ T i
o ;
£ :-
: i_
gy :
(&) :
i
150
_ 100r
T I e i st i
};.. S[j_
0 :
I 1 | | i i
2 0 2 4 6 8 10

time (msec)
Fig. 2 Simulated voltage-clamp data illustr ating voltage-dependent propertiesof the K* conductancein
squid giant axon. The command voltage V(mV) is shown in the lower paned and the K" current in the
upper pand. Simulation parametersarefrom the Hodgkin and Huxley model (1952).

Voltage conventions

While were on the topic of conventions, there are two more issues that should be
discussed here. The first concerns the value of the membrane potentia Vi,. Recdl that potentids
ae rdaive only potentia differences can be measured directly. Thus when defining the
intracellular potentia V,, one is free to choose a convention that defines the resting intracdlular
potentid to be zero (the convention used by Hodgkin and Huxley), or one could choose a
convention that defines the extracdlular potentid to be zero, in which case the resting
intracellular potentid would be around —70 mV. In ether case the potentid difference across the
membrane is the same, it's amply a matter of how “zerd” is defined. Mogt smulaion software
packages alow the user to select a voltage reference convention they like.

The second convention we need to discuss concerns the sign of the membrane potentid.
The modern convention is tha depolarization makes the membrane potentid V,, more positive.
However, Hodgkin and Huxley (1952) used the opposte sgn convention (depolarization
negative) in their paper. In the figures in this chepter, we use the modern convention that
depolarization is pogtive.

At a conceptud leved, the choice of conventions for currents and voltages is
inconsequential, however a the implementation level it maters a great ded, snce
inconsgtencies will cause the modd to behave incorrectly. The most important thing in choosing
conventions is to ensure that the choices are interndly condstent. One must pay careful atention
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to these issues when implementing a smulation using equations from a published mode, snce it
may be necessary to convert the empirica results reported usng one set of conventions into a
form that is consstent with one's own mode conventions.

Rate Constants

How did Hodgkin and Huxley go about determining the voltage-dependence of the rate
congants a and b that appear in equations Egs. 11-13? How did they determine that the
potassum conductance should be modeled with four n gates, but that the sodium conductance
required three m gates and one h gate? In order to answer these questions, we need to look in
more detall at the type of data that can be obtained from voltage- clamp experiments.

Fg. 2 shows smulated voltage-clamp data, smilar to those obtained by Hodgkin and
Huxley in ther studies of squid giant axon. In these experiments, Hodgkin and Huxley used
voltage clamp circuitry to step the membrane potentia from the resting levd (0 mV) to a steady
depolarized levd. The figure shows the time course of the change in normalized K™ conductance
for severd different voltage seps. Three quditative effects are apparent in the data Firdt, the
steady-state conductance level increases with increasing membrane depolarization. Second, the
onst of the conductance change becomes fagter with increasing depolarization. Third, there is a
dight tempora delay between the start of the voltage step and the change in conductance.

In the smulated voltage clamp experimentsilludrated in Fg. 2, the membrane potentid sartsin
the resting state (Vi = 0, using the HH voltage convention) and is then ingtantaneoudly stepped to
anew clamp voltage V.. What is the time course of the state variable n, that controls gating of the
K™ channdl, under these circumstances? Recall that the differential equiation governing the state
vaiable nisgiven by:

o (V)= n)- b,(V)n (14)

Initidly, with Vi, = 0, the state variable n has a steady- state vaue (i.e., when dn/dt = 0) given by
Eq. 5

an(o)

"0 0+ b.0

(15)
When Vy,, isclamped to anew leve V¢, the gating variable n will eventudly reach anew steady-

dete vadue given by:

a,(Vo)
a,(Ve)+ b, (V)

n, (Vo) = (16)

The solution to Eq. 14 that satisfies these boundary conditions is a smple exponentia of the
form:

@ =n, (Vo) - (ny (Vo) - np(@)e" (17)

Given Eq. 17, which describes the time course of n in response to a step changein
command voltage, one could try fitting curves of this form to the conductance data shown in Fig.
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Fig. 3Best fit curvesof theform G, = g‘Kni (j =1-4) for simulated conductance vs. timedata. Theinset

shows an enlargement of thefirst millisecond of theresponse. Theinitial inflection in the curve cannot be
well-fit by a simple exponential (dotted line) which riseslinearly from zero. Successively higher power s of

j (=2: dot-dashed; j=3: dashed line) result in a better fit to theinitial inflection. In thiscase, j=4 (solid line)
givesthebest fit.

2 by finding valuesof n, (V,), n,(0),and t, (V,) that give the bes fit to the data for each value
of V. Fg. 3illugtrates this process, usng some simulated conductance data generated by the
Hodgkin-Huxley modd. Recall that n takes on values between 0 and 1, so in order to fit the
conductance data, n must be multiplied by a normaization congtant g, that has units of

conductance. For smplicity, the normalized conductance G, / g, is plotted. The dotted linein
Fig. 3 shows the best-fit results for asmple exponentia curve of the form givenin Eq. 17. While
this smple form does a reasonable job of capturing the generd time course of the conductance
change, it failsto reproduce the sgmoidd shape and the tempora ddlay in onset. This
discrepancy is most gpparent near the onset of the conductance change, shown in the inset of Fg.
3. Hodgkin and Huxley redlized that a better fit could be obtained if they considered the
conductance to be proportiona to a higher power of n. Figure 3 shows the results of fitting the
conductance datausing aform G, = g,n’ with powersof j ranging from 1 to 4. Using this sort of
fitting procedure, Hodgkin and Huxley determined that a reasonable fit to the K* conductance
data could be obtained using an exponent of j=4. Thusthey arrived at adescription for the K*
conductance under voltage clamp conditions given by:

Gy =Tn* =Ty, (Vo) - (0, (V) - 1, (O))e " | (18)
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Fig. 4 Simulated voltage-clamp dataillustrating activation and inactivation propertiesof the Na"
conductancein squid giant axon. The command voltage V. is shown in the lower panel and the Na*

current in theupper panel. Simulation parametersarefrom the Hodgkin and Huxley model (1952).

Activation and I nactivation gates

The strategy Hodgkin and Huxley used for modding the sodium conductance is Smilar to that
described above for the potassium conductance, except that the sodium conductance shows a
more complex behavior. In response to a step change in clamp voltage, the sodium conductance
exhibits a transent response (Fig. 4), whereas the potassum conductance exhibits a sustained
response (Fig. 2). Sodium channds inactivate whereas the potassum channels do not. To mode!
this process, Hodgkin and Huxley postulated that the sodium channels had two types of gates, an
activation gate, which they labeled m, and an inactivation gate, which they labeled h. Again,
boundary conditions dictated that m and h must follow atime course given by:

m(t) = m, (V,)- (m,(V,) - m,(0))e /% (19)

h(t) = h, (V,) - (h, (V;) - h,(0))e "¢ (20)

Hodgkin and Huxley made some further smplifications by observing that the sodium
conductance in the resting state is small compared to the vaue obtained during alarge

depolarization, hence they were able to neglect m, (0) in their fitting procedure. Likewise, steady
date inactivation is nearly complete for large depolarizations, so h, (V) could dso be diminated
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Fig. 5 Parametric fits to voltage-dependence of the K* conductance in the HH modd. (A) Steady-state
value Ny ; (B) timeconstant t | (C) forward rateconstant @ , ; and (D) backward rate constant bn. Data

pointsarefrom Table 1 of Hodgkin and Huxley (1952). Solid linesin (C) and (D) are parametricfitstothe
ratedata. Thebest fit curvescorrespond to Egs. 23 and 24, respectively. Solid linesin (A) and (B) arethe

transformations of thea /b functionsinto the N, /t representation using Egs. 5 and 6.

from the fitting procedure. With these smplifications, Hodgkin and Huxley were gble to fit the
remaining parameters from the voltage clamp data. The sodium conductance Gy, Was thus

modeled by an expression of the form G, = g,,m°h.

Parameterizing the rate constants

By fitting voltage clamp data as discussed above, steady-state conductance values and
time congtants can be empiricaly determined as afunction of command voltage for each of the
gating variables associated with a particular channdl. Using Egs. 5 and 6, the Steady-state
conductance vaues and time constants can be transformed into expressions for the forward and
backward rate constants a and b. For example, for the potassum channel n gate:

_n (V)
an(\/)—m (21)
b (\/):M 22)

" I\
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Thus there are two equivaent representations for the voltage dependence of a channel. One
representation specifies the voltage dependence of the rate constants, whichweé'll cdl thea /b
representation. The other representation specifies the voltage dependence of the steady state
conductance and the time congtant, which we'll call the n, /t representation. These two
representations are interchangeable and one can eadily convert between them using the dgebraic
relaionshipsin Egs. 5 and 6 (for transforming from a /b to n, /t ) and Egs. 21 and 22 (for
trandforming from n, /t to a /b ). In generd, experimentaists tend to use the n, /t
representation because it maps more directly onto the results of voltage-clamp experiments.
Modders, on the other hand, tend to express voltage-dependenciesusing the a / b representation,
because it maps more directly onto the gating equations (Egs. 11-13) in the sandard formulation
of the Hodgkin-Huxley modd.

Voltage clamp experimentsyield estimatesof n, /t or a /b only &t the discrete clamp
voltages V¢ used in the experiment. Numerica integration of the HH modd, however, requires
that n, /t or a /b vaues be specified over a continuous range of membrane voltages, snce the
membrane potentia varies cortinuoudy in the modd. Typicaly, voltage dependencies are
expressed as a continuous function of voltage, and the task for the modeler becomes one of
determining the parameter vaues that best fit the data. As anilludtration, the closed circlesin

Fig. SArepresent B empirical dataon n, (V,) and t  (V,) obtained by Hodgkin and Huxley (Table

1, Hodgkin and Huxley, 1952). The data pointsin Fig. 5CD show the same data set transformed
intothea /b representation. Hodgkin and Huxley used the following functiond formsto

parameterize their K™ conductance results (shown as solid linesin Fig. 5):

0.01(10- V)

3, (V)= —g6° @
exp( ) 1
b, (V) =0.125exp(- V /80) (24)

If Egs. 23 and 24 above are compared with Egs. 12 and 13 from the origind paper (Hodgkin and
Huxley, 1952), you will note that the Sign of the membrane voltage has been changed to
correspond to the modern convention (see subsection on Voltage Conventions above). Hodgkin
and Huxley used smilar functiond forms to describe the voltage dependence of them and h

gates of the sodium channd!:

(V)= A2 V) (25)
G‘XD(T) -1
b, (V) =4exp(-V /18) (26)

a, (V) = 0.07exp(- V / 20) (27)
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1
10
In neurd Smulation software packages, the rate congtants in HH-style models are often
parameterized usng a generic functiond form:
A+ BV
a(Vv)= (29)

C+H exp(%)

In generd, this functiona form may require up to six parameters (A, B, C, D, F, H) tofully
specify the rate equation. However, in many cases adequate fits to the data can be obtained using
far fewer parameters. Fortunatdly, Eq. 29 isflexible enough that it can be transformed into
ampler functiond forms by setting certain parametersto either O or 1. For example, if the
voltage clamp data can be adequatdly fit by an exponentid function over the relevant range of
voltages, then seiting B=0, C=0, D=0 and H=1 in Eq. 29, resultsin a smple exponentid form,
a(V) = Aexp(- V! F), with just two free parameters (A and F) to befit to the data. Smilarly,
setting B=0, C=1 and H=1 givesa sigmoida function with three free parameters (A, D, and F).

One other technica noteisthat certain function forms can become indeterminate a
certain voltage values. For example, the expression for a,, (V) in Eq. 23 evaluatesto the
indeterminate form 0/0 at V=10. The solution to this problem isto gpply L’ Hospitd’ s rule, which
datesthat if f(x) and g(x) approach O as x approachesa, and f (x)/ g(x) approachesL asx
approaches a, then theratio f (x)/ g(x) approaches L aswell. Usng thisrule, it can be shown
that a ,(10) = 0.1. When implementing HH- style rate functions in computer code, care must be
taken to handle such cases appropriately.
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