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Hodgkin-Huxley Models 

The core mathematical framework for modern biophysically based neural modeling was 
developed half a century ago by Sir Alan Hodgkin and Sir Andrew Huxley. They carried out an 
elegant series of electrophysiological experiments on the squid giant axon in the late 1940s and 
early 1950s. The squid giant axon is notable for its extraordinarily large diameter (~0.5 mm). 
Most axons in the squid nervous system and in other nervous systems are typically at least 100 
times thinner. The large size of the squid giant axon is a specialization for rapid conduction of 
action potentials that trigger the contraction of the squid’s mantle when escaping from a 
predator. In addition to being beneficial for the squid, the large diameter of the giant axon was 
beneficial for Hodgkin and Huxley because it permitted manipulations that were not technically 
feasible in smaller axons that had been used in biophysical studies up to that point. In a well-
designed series of experiments, Hodgkin and Huxley systematically demonstrated how the 
macroscopic ionic currents in the squid giant axon could be understood in terms of changes in 
Na+ and K+ conductances in the axon membrane. Based on a series of voltage-clamp 
experiments, they developed a detailed mathematical model of the voltage-dependent and time-
dependent properties of the Na+ and K+ conductances. The empirical work lead to the 
development of a coupled set of differential equations describing the ionic basis of the action 
potential (Hodgkin and Huxley, 1952), which became known as the Hodgkin-Huxley (HH) 
model. The real predictive power of the model became evident when Hodgkin and Huxley 
demonstrated that numerical integration of these differential equations (using a hand-cranked 
mechanical calculator!) could accurately reproduce all the key biophysical properties of the 
action potential. For this outstanding achievement, Hodgkin and Huxley were awarded the 1963 
Nobel Prize in Physiology and Medicine (shared with Sir John Eccles for his work on the 
biophysical basis of synaptic transmission).  

Electrical equivalent circuits 

In biophysically based neural modeling, the electrical properties of a neuron are 
represented in terms of an electrical equivalent circuit. Capacitors are used to model the charge 
storage capacity of the cell membrane, resistors are used to model the various types of ion 
channels embedded in membrane, and batteries are used to represent the electrochemical 
potentials established by differing intra- and extracellular ion concentrations. In their seminal 
paper on the biophysical basis of the action potential, Hodgkin and Huxley (1952) modeled a 
segment of squid giant axon using an equivalent circuit similar to that shown in Fig. 1. In the 
equivalent circuit, the current across the membrane has two major components, one associated 
with the membrane capacitance and one associated with the flow of ions through resistive 
membrane channels. The capacitive current Ic is defined by the rate of change of charge q at the 
membrane surface: Ic = dq/dt. The charge q(t) is related to the instantaneous membrane voltage 
Vm(t) and membrane capacitance Cm by the relationship q = CmVm. Thus the capacitive current 
can be rewritten as Ic = Cm dVm/dt. In the Hodgkin-Huxley model of the squid axon, the ionic 
current Iion is subdivided into three distinct components, a sodium current INa, a potassium 
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current IK, and a small leakage current IL that is primarily carried by chloride ions. The behavior 
of an electrical circuit of the type shown in Fig. 1 can be described by a differential equation of 
the general form: 

extion
m

m II
dt

dV
C =+   (1) 

where Iext is an externally applied current, such as might be introduced through an intracellular 
electrode. Equation 1 is the fundamental equation relating the change in membrane potential to 
the currents flowing across the membrane. 

Macroscopic Ionic Currents 

The individual ionic currents INa, IK and IL shown in Fig. 1 represent the macroscopic currents 
flowing through a large population of individual ion channels. In HH-style models, the 
macroscopic current is assumed to be related to the membrane voltage through an Ohm’s law 
relationship of the form V=IR. In many cases it is more convenient to express this relationship in 
terms of conductance rather than resistance, in which case Ohm’s law becomes I = GV, where 
the conductance G is the inverse of resistance, G = 1/R. In applying this relationship to ion 
channels, the equilibrium potential Ek for each ion type also needs to be taken into account. This 
is the potential at which the net ionic current flowing across the membrane would be zero. The 
equilibrium potentials are represented by the batteries in Fig. 1. The current is proportional to the 

 
Fig. 1 Electrical equivalent circuit for a short segment of squid giant axon. The capacitor represents the 
capacitance of the cell membrane; the two variable resistors represent voltage-dependent Na+ and K+

conductances, the fixed resistor represents a voltage-independent leakage conductance and the three 
batteries represent reversal potentials for the corresponding conductances. The pathway labeled “stim” 
represents an externally applied current, such as might be introduced via an intracellular electrode. The 
sign conventions for the various currents are indicated by the directions of the corresponding arrows. 
Note that the arrow for the external stimulus current Iext is directed from outside to inside (i.e., inward 
stimulus current is positive), whereas arrows for the ionic currents INa, IK and IL are directed from inside 
to outside (i.e., outward ionic currents are positive). After Hodgkin & Huxley (1952). 
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conductance times the difference between the membrane potential Vm and the equilibrium 
potential Ek. The total ionic current Iion is the algebraic sum of the individual contributions from 
all participating channel types found in the cell membrane: 

∑∑ −==
k

kmk
k

kion EVGII )(   (2) 

which expands to the following expression for the Hodgkin-Huxley model of the squid axon: 

)()()( LmLKmKNamNaion EVGEVGEVGI −+−+−=  (3) 

Note that individual ionic currents can be positive or negative depending on whether or not the 
membrane voltage is above or below the equilibrium potential. This raises the question of sign 
conventions. Is a positive ionic current flowing into or out of the cell? The most commonly used 
sign convention in neural modeling is that ionic current flowing out of the cell is positive and 
ionic current flowing into the cell is negative (see subsection on Sign Conventions for more 
details).  

In general, the conductances are not constant values, but can depend on other factors like 
the membrane voltage or the intracellular calcium concentration. In order to explain their 
experimental data, Hodgkin and Huxley postulated that GNa and GK were voltage-dependent 
quantities, whereas the leakage current GL was taken to be constant. Thus the resistor symbols in 
Fig. 1 are shown as variable resistors for GNa and GK, and as a fixed resistor for GL. Today, we 
know that the voltage-dependence of GNa and GK can be related to the biophysical properties of 
the individual ion channels that contribute to the macroscopic conductances. Although Hodgkin 
and Huxley did not know about the properties of individual membrane channels when they 
developed their model, it will be convenient for us to describe the voltage-dependent aspects of 
their model in those terms. 

Gates 

The macroscopic conductances of the HH model can be considered to arise from the 
combined effects of a large number of microscopic ion channels embedded in the membrane. 
Each individual ion channel can be thought of as containing one or more physical gates that 
regulate the flow of ions through the channel. An individual gate can be in one of two states, 
permissive or non-permissive. When all of the gates for a particular channel are in the permissive 
state, ions can pass through the channel and the channel is open. If any of the gates are in the 
non-permissive state, ions cannot flow and the channel is closed. Although it might seem more 
natural to speak of gates as being open or closed, a great deal of confusion can be avoided by 
consistently using the terminology permissive and non-permissive for gates while reserving the 
terms open and closed for channels. 

The voltage-dependence of ionic conductances is incorporated into the HH model by 
assuming that the probability for an individual gate to be in the permissive or non-permissive 
state depends on the value of the membrane voltage. If we consider gates of a particular type i, 
we can define a probability pi, ranging between 0 and 1, which represents the probability of an 
individual gate being in the permissive state. If we consider a large number of channels, rather 
than an individual channel, we can also interpret pi as the fraction of gates in that population that 
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are in the permissive state. At some point in time t, let pi(t) represent the fraction of gates that are 
in the permissive state. Consequently 1- pi (t) must be in the non-permissive state. 
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The rate at which gates transition from the non-permissive state to the permissive state is 
denoted by a variable αi(V), which has units of sec-1. Note that this “rate constant” is not really 
constant, but depends on membrane voltage V. Similarly there is a second rate constant, β  i(V) 
describing the transition rate from the permissive to the non-permissive state. Transitions 
between permissive and non-permissive states in the HH model are assumed to obey first-order 
kinetics: 
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where αi(V) and β i(V) are voltage-dependent. If the membrane voltage Vm is clamped at some 
fixed value V, then the fraction of gates in the permissive state will eventually reach a steady 
state value (i.e., dpi/dt = 0) as tà8  given by: 
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The time course for approaching this equilibrium value is described by a simple exponential with 
time constant τi(V) given by: 
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When an individual channel is open, it contributes some small, fixed value to the total 
conductance and zero otherwise. The macroscopic conductance for a large population of 
channels is thus proportional to the number of channels in the open state, which is in turn 
proportional to the probability that the associated gates are in their permissive state. Thus the 
macroscopic conductance Gk due to channels of type k, with constituent gates of type i, is 
proportional to the product of the individual gate probabilities pi: 

∏=
i
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where kg  is a normalization constant that determines the maximum possible conductance when 
all the channels are open (i.e. all gates are in the permissive state). 

We have presented Eqs. 4–7 using a generalized notation that can be applied to a wide 
variety of conductances beyond those found in the squid axon. To conform to the standard 
notation of the HH model, the probability variable pi in Eqs. 4–7 is replaced by a variable that 
represents the gate type. For example, Hodgkin and Huxley modeled the sodium conductance 
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using three gates of a type labeled “m” and one gate of type “h”. Applying Eq. 7 to the sodium 
channel using both the generalized notation and the standard notation yields: 

hmgppgG NahmNaNa
33 ==   (8) 

Similarly, the potassium conductance is modeled with 4 identical “n” gates: 

44 ngpgG NanKK ==   (9) 

Summarizing the ionic currents in the HH model in standard notation, we have:  
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To completely specify the model, the one task that remains is to specify how the six rate 
constants in Eqs. 11–13 depend on the membrane voltage. Then Eqs. 10–13, together with Eq. 1, 
completely specify the behavior of the membrane potential Vm in the HH model of the squid 
giant axon. 

Sign Conventions 

Note that the appearance of Iion on the left-hand side of Eq. 1 and Iext on the right 
indicates that they have opposite sign conventions. As the equation is written, a positive external 
current Iext will tend to depolarize the cell (i.e., make Vm more positive) while a positive ionic 
current Iion will tend to hyperpolarize the cell (i.e., make Vm more negative). This sign convention 
for ionic currents is sometimes referred to as the neurophysiological or physiologists’ 
convention. This convention is conveniently summarized by the phrase “inward negative”, 
meaning that an inward flow of positive ions into the cell is considered a negative current. This 
convention perhaps arose from the fact that when one studies an ionic current in a voltage clamp 
experiment, rather than measuring the ionic current directly, one actually measures the clamp 
current which is necessary to counterbalance it. Thus an inward flow of positive ions is observed 
as a negative-going clamp current, hence explaining the “inward negative” convention. Some 
neural simulation software packages, such as GENESIS, use the opposite sign convention 
(inward positive), since that allows all currents to be treated consistently. In the figures shown in 
this chapter, membrane currents are plotted using the neurophysiological convention (inward 
negative). 
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Voltage conventions 

While we're on the topic of conventions, there are two more issues that should be 
discussed here. The first concerns the value of the membrane potential Vm. Recall that potentials 
are relative; only potential differences can be measured directly. Thus when defining the 
intracellular potential Vm, one is free to choose a convention that defines the resting intracellular 
potential to be zero (the convention used by Hodgkin and Huxley), or one could choose a 
convention that defines the extracellular potential to be zero, in which case the resting 
intracellular potential would be around –70 mV. In either case the potential difference across the 
membrane is the same, it's simply a matter of how “zero” is defined. Most simulation software 
packages allow the user to select a voltage reference convention they like. 

The second convention we need to discuss concerns the sign of the membrane potential. 
The modern convention is that depolarization makes the membrane potential Vm more positive. 
However, Hodgkin and Huxley (1952) used the opposite sign convention (depolarization 
negative) in their paper. In the figures in this chapter, we use the modern convention that 
depolarization is positive.  

At a conceptual level, the choice of conventions for currents and voltages is 
inconsequential, however at the implementation level it matters a great deal, since 
inconsistencies will cause the model to behave incorrectly. The most important thing in choosing 
conventions is to ensure that the choices are internally consistent. One must pay careful attention 

 
Fig. 2 Simulated voltage-clamp data illustrating voltage-dependent properties of the K+ conductance in 
squid giant axon. The command voltage Vc(mV) is shown in the lower panel and the K+ current in the 
upper panel. Simulation parameters are from the Hodgkin and Huxley model (1952). 
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to these issues when implementing a simulation using equations from a published model, since it 
may be necessary to convert the empirical results reported using one set of conventions into a 
form that is consistent with one’s own model conventions. 

Rate Constants 

How did Hodgkin and Huxley go about determining the voltage-dependence of the rate 
constants α and β  that appear in equations Eqs. 11–13? How did they determine that the 
potassium conductance should be modeled with four n gates, but that the sodium conductance 
required three m gates and one h gate? In order to answer these questions, we need to look in 
more detail at the type of data that can be obtained from voltage-clamp experiments. 

Fig. 2 shows simulated voltage-clamp data, similar to those obtained by Hodgkin and 
Huxley in their studies of squid giant axon. In these experiments, Hodgkin and Huxley used 
voltage clamp circuitry to step the membrane potential from the resting level (0 mV) to a steady 
depolarized level. The figure shows the time course of the change in normalized K+ conductance 
for several different voltage steps. Three qualitative effects are apparent in the data. First, the 
steady-state conductance level increases with increasing membrane depolarization. Second, the 
onset of the conductance change becomes faster with increasing depolarization. Third, there is a 
slight temporal delay between the start of the voltage step and the change in conductance. 
In the simulated voltage clamp experiments illustrated in Fig. 2, the membrane potential starts in 
the resting state (Vm = 0, using the HH voltage convention) and is then instantaneously stepped to 
a new clamp voltage Vc. What is the time course of the state variable n, that controls gating of the 
K+ channel, under these circumstances? Recall that the differential equation governing the state 
variable n is given by: 
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Initially, with Vm = 0, the state variable n has a steady-state value (i.e., when dn/dt = 0) given by 
Eq. 5: 
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When Vm is clamped to a new level Vc, the gating variable n will eventually reach a new steady-
state value given by: 
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The solution to Eq. 14 that satisfies these boundary conditions is a simple exponential of the 
form: 
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Given Eq. 17, which describes the time course of n in response to a step change in 
command voltage, one could try fitting curves of this form to the conductance data shown in Fig. 
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2 by finding values of )( cVn∞ , )0(∞n , and )( cn Vτ  that give the best fit to the data for each value 
of Vc. Fig. 3 illustrates this process, using some simulated conductance data generated by the 
Hodgkin-Huxley model. Recall that n takes on values between 0 and 1, so in order to fit the 
conductance data, n must be multiplied by a normalization constant Kg  that has units of 
conductance. For simplicity, the normalized conductance KK gG /  is plotted. The dotted line in 
Fig. 3 shows the best-fit results for a simple exponential curve of the form given in Eq. 17. While 
this simple form does a reasonable job of capturing the general time course of the conductance 
change, it fails to reproduce the sigmoidal shape and the temporal delay in onset. This 
discrepancy is most apparent near the onset of the conductance change, shown in the inset of Fig. 
3. Hodgkin and Huxley realized that a better fit could be obtained if they considered the 
conductance to be proportional to a higher power of n. Figure 3 shows the results of fitting the 
conductance data using a form j

kK ngG = with powers of j ranging from 1 to 4. Using this sort of 
fitting procedure, Hodgkin and Huxley determined that a reasonable fit to the K+ conductance 
data could be obtained using an exponent of j=4. Thus they arrived at a description for the K+ 
conductance under voltage clamp conditions given by: 

[ ]4/4 ))0()(()( nt
ccKKK enVnVngngG τ−

∞∞∞ −−==  (18) 

 
Fig. 3 Best fit curves of the form j

Kk ngG =  (j = 1–4) for simulated conductance vs. time data. The inset 

shows an enlargement of the first millisecond of the response. The initial inflection in the curve cannot be 
well-fit by a simple exponential (dotted line) which rises linearly from zero. Successively higher powers of 
j (j=2: dot-dashed; j=3: dashed line) result in a better fit to the initial inflection. In this case, j=4 (solid line) 
gives the best fit. 
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Activation and Inactivation gates 

The strategy Hodgkin and Huxley used for modeling the sodium conductance is similar to that 
described above for the potassium conductance, except that the sodium conductance shows a 
more complex behavior. In response to a step change in clamp voltage, the sodium conductance 
exhibits a transient response (Fig. 4), whereas the potassium conductance exhibits a sustained 
response (Fig. 2). Sodium channels inactivate whereas the potassium channels do not. To model 
this process, Hodgkin and Huxley postulated that the sodium channels had two types of gates, an 
activation gate, which they labeled m, and an inactivation gate, which they labeled h. Again, 
boundary conditions dictated that m and h must follow a time course given by: 

)(/))0()(()()( cm Vt
cc emVmVmtm τ−

∞∞∞ −−=   (19) 
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Hodgkin and Huxley made some further simplifications by observing that the sodium 
conductance in the resting state is small compared to the value obtained during a large 
depolarization, hence they were able to neglect )0(∞m in their fitting procedure. Likewise, steady 
state inactivation is nearly complete for large depolarizations, so )( cVh∞ could also be eliminated 

 
Fig. 4 Simulated voltage-clamp data illustrating activation and inactivation properties of the Na+ 
conductance in squid giant axon. The command voltage Vc is shown in the lower panel and the Na+ 
current in the upper panel. Simulation parameters are from the Hodgkin and Huxley model (1952). 
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from the fitting procedure. With these simplifications, Hodgkin and Huxley were able to fit the 
remaining parameters from the voltage clamp data. The sodium conductance GNa was thus 
modeled by an expression of the form hmgG NaNa

3= . 

Parameterizing the rate constants 

By fitting voltage clamp data as discussed above, steady-state conductance values and 
time constants can be empirically determined as a function of command voltage for each of the 
gating variables associated with a particular channel. Using Eqs. 5 and 6, the steady-state 
conductance values and time constants can be transformed into expressions for the forward and 
backward rate constants α and β . For example, for the potassium channel n gate:  
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Fig. 5 Parametric fits to voltage-dependence of the K+ conductance in the HH model. (A) Steady-state 
value ∞n ; (B) time constant nτ  (C) forward rate constant nα ; and (D) backward rate constant nβ . Data 

points are from Table 1 of Hodgkin and Huxley (1952). Solid lines in (C) and (D) are parametric fits to the 
rate data. The best fit curves correspond to Eqs. 23 and 24, respectively. Solid lines in (A) and (B) are the 

transformations of the α/β functions into the τ/∞n  representation using Eqs. 5 and 6. 
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Thus there are two equivalent representations for the voltage dependence of a channel. One 
representation specifies the voltage dependence of the rate constants, which we’ll call the βα /  
representation. The other representation specifies the voltage dependence of the steady state 
conductance and the time constant, which we’ll call the τ/∞n representation. These two 
representations are interchangeable and one can easily convert between them using the algebraic 
relationships in Eqs. 5 and 6 (for transforming from βα /  to τ/∞n ) and Eqs. 21 and 22 (for 
transforming from τ/∞n  to βα / ). In general, experimentalists tend to use the τ/∞n  
representation because it maps more directly onto the results of voltage-clamp experiments. 
Modelers, on the other hand, tend to express voltage-dependencies using the βα / representation, 
because it maps more directly onto the gating equations (Eqs. 11-13) in the standard formulation 
of the Hodgkin-Huxley model. 

Voltage clamp experiments yield estimates of τ/∞n  or βα / only at the discrete clamp 
voltages Vc used in the experiment. Numerical integration of the HH model, however, requires 
that τ/∞n  or βα / values be specified over a continuous range of membrane voltages, since the 
membrane potential varies continuously in the model. Typically, voltage dependencies are 
expressed as a continuous function of voltage, and the task for the modeler becomes one of 
determining the parameter values that best fit the data. As an illustration, the closed circles in 
Fig. 5Arepresent B empirical data on )( cVn∞ and )( cn Vτ obtained by Hodgkin and Huxley (Table 
1, Hodgkin and Huxley, 1952). The data points in Fig. 5CD show the same data set transformed 
into the βα /  representation. Hodgkin and Huxley used the following functional forms to 
parameterize their K+ conductance results (shown as solid lines in Fig. 5): 
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If Eqs. 23 and 24 above are compared with Eqs. 12 and 13 from the original paper (Hodgkin and 
Huxley, 1952), you will note that the sign of the membrane voltage has been changed to 
correspond to the modern convention (see subsection on Voltage Conventions above). Hodgkin 
and Huxley used similar functional forms to describe the voltage dependence of the m and h 
gates of the sodium channel: 
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In neural simulation software packages, the rate constants in HH-style models are often 
parameterized using a generic functional form: 
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In general, this functional form may require up to six parameters (A, B, C, D, F, H) to fully 
specify the rate equation. However, in many cases adequate fits to the data can be obtained using 
far fewer parameters. Fortunately, Eq. 29 is flexible enough that it can be transformed into 
simpler functional forms by setting certain parameters to either 0 or 1. For example, if the 
voltage clamp data can be adequately fit by an exponential function over the relevant range of 
voltages, then setting B=0, C=0, D=0 and H=1 in Eq. 29, results in a simple exponential form, 

)/exp()( FVAVa −= , with just two free parameters (A and F) to be fit to the data. Similarly, 
setting B=0, C=1 and H=1 gives a sigmoidal function with three free parameters (A, D, and F). 

One other technical note is that certain function forms can become indeterminate at 
certain voltage values. For example, the expression for )(Vnα in Eq. 23 evaluates to the 
indeterminate form 0/0 at V=10. The solution to this problem is to apply L’Hospital’s rule, which 
states that if f(x) and g(x) approach 0 as x approaches a, and )(/)( xgxf ′′  approaches L as x 
approaches a, then the ratio )(/)( xgxf approaches L as well. Using this rule, it can be shown 
that 1.0)10( =nα . When implementing HH-style rate functions in computer code, care must be 
taken to handle such cases appropriately. 
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