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Abstract

Animals respond to changes in their environment based on the information encoded in neu-
ronal spike activity. One key issue is to determine how quickly and reliably the system can
detect that a behaviorally relevant change has taken place. What are the neural mechanisms and
computational principles that allow fast, reliable detection of changes in spike activity? Here we
present an optimal statistical signal-processing algorithm for change-point detection, known as
the cumulative sum (CUSUM) algorithm. We then show that the performance of a simple neu-
ron model with leaky-integrate-and-6re dynamics can approach theoretically optimal performance
limits under certain conditions.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important aspect of behavior is to evaluate choices and make decisions. At the
neural level, the information to support these processes is carried in large part by
the time-varying activity of spiking neurons. For an animal to respond quickly and
reliably to changes in the environment, it must draw inferences in real time from
neuronal spike train data. It is therefore useful to ask what sorts of neural algorithms
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might be employed for detecting changes in spike activity in real time, and how does
the performance of these neural algorithms compare with known theoretical results on
optimal signal detection?

Here we present an optimal statistical signal-processing algorithm for detecting abrupt
changes in spike activity, based on an established technique known as the cumu-
lative sum (CUSUM) method [1]. We then compare the detection performance of
a simple neuron model with the optimal signal-processing algorithm. We show that
the performance of a neuron model with leaky-integrate-and-6re dynamics can ap-
proach the theoretically optimal performance under appropriate conditions. Our interest
in this topic is motivated, in part, by questions about how weakly electric 6sh de-
tect and localize prey based on subtle changes in electrosensory aDerent spike activity
[6,8].

2. De�ning the problem

Consider a spike train as a sequence of random interspike intervals (ISIs). Initially,
the intervals I1; I2; : : : are distributed according to some probability density function
(PDF) f0(I), which can be empirically estimated from the ISI distribution. At some
unknown point in the ISI sequence, an abrupt shift occurs such that interval m and
all subsequent intervals Im; Im+1; : : : are distributed according to a new PDF f1(I).
The change in the underlying PDF will be reHected as a change in the observed ISI
distribution following the change-point m. Before and after the change-point, the dis-
tributions are assumed to be stationary and the ISIs are assumed to be independent.
Detection performance is measured in terms of the mean detection delay as a function
of the mean time between false alarms. False alarms occur when the algorithm sig-
nals that a change has occurred in the absence of any real change in the underlying
PDF.

3. The CUSUM algorithm

Consider sampling a single ISI Ik from a spike train without knowing whether it
occurred before or after the change-point m. We wish to distinguish between two
hypotheses: that the ISI occurred before the change (H0), or that the ISI occurred
after the change (H1). The log-likelihood of H1 relative to H0 based on this single
observation is

s(Ik) = ln
f1(Ik)
f0(Ik)

: (1)

The CUSUM algorithm is an iterative algorithm for processing consecutive samples
based on a CUSUM of log-likelihood ratios. When the CUSUM crosses an upper
threshold level h it indicates that the accumulated evidence in favor of H1 is suJcient to
signal that a change has occurred. Crossing a lower threshold level at zero indicates that
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the accumulated evidence favors hypothesis H0 and that the CUSUM should be reset
to zero. Starting with the 6rst ISI in the spike train, I1, and proceeding sequentially,
the update rule for the CUSUM algorithm is

gk =

{
gk−1 + s(Ik) if gk−1 + s(Ik)¿ 0;

0 otherwise;
(2)

with the initial condition g0 =0. The detection of a change is signaled following obser-
vation of the nth ISI, if gn=h. The detection delay d, measured in intervals, is de6ned
by d= n− m+ 1, where m is the index of the 6rst ISI after the actual change-point.
The CUSUM algorithm, which was 6rst introduced by [7], has been shown to be
asymptotically optimal for solving change detection problems involving independent
and identically distributed samples drawn from two known PDFs [3]. Others have
extended these results to establish non-asymptotic optimality under certain conditions
[4,9] and optimality for processes that are not necessarily independent and identically
distributed [5].

4. Applying CUSUM to spike train data

An application of the CUSUM algorithm to simulated spike train data is illustrated
in Fig. 1. ISI values were randomly drawn from a gamma distribution of order n and
mean MI . The PDF for a gamma distribution of order n and mean MI is given by

f(I) =
nn

MI n(n− 1)!
I n−1 exp[ − nI= MI ]: (3)

The parameters for the initial PDF f0 were n= 8 and MI 0 = 0:020 s (corresponding to
a mean rate MR0 = 50 Hz); the resulting ISI distribution is illustrated in Fig. 1A. After
the change-point, the new PDF f1 had a mean MI 1 = 0:015 s (corresponding to a mean
rate MR1 = 66:7 Hz) and n remained unchanged; the resulting ISI distribution is shown
in Fig. 1B. Fig. 1C shows a sample spike train before and after the change-point.

Following Eq. (1), the log-likelihood ratio for an ISI of duration I in this
example is

s(I) = ln
f1(I)
f0(I)

= ln
[nn= MI n1(n− 1)!]I n−1 exp[ − nI= MI 1]
[nn= MI n0(n− 1)!]I n−1 exp[ − nI= MI 0]

= n
(

ln
MR1

MR0
− OR I

)
; (4)

where MR0 =1= MI 0, MR1 =1= MI 1, and OR= MR1 − MR0. Substituting numerical values from this
particular example yields s(I) ∼= 2:3−133I . Using this expression for s(I), the CUSUM
update rule (Eq. (2)) is evaluated after the observation of each ISI, as illustrated by
the solid points in Fig. 1D. When the value of gk (solid points) crosses above the
threshold level h (horizontal dashed line), a detection event is signaled and the update
process is terminated.

Although the CUSUM output gk is de6ned only at the end of each ISI, the form
of the log-likelihood function s(I) suggests an interpolation that will be useful when
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Fig. 1. Change-point detection in simulated spike train data: (A) ISI distribution before the change-point.
(B) ISI distribution after the change-point. For reference the original ISI distribution is shown as a solid
line. (C) Spike train data before and after the change-point, which is indicated by the vertical dotted line.
(D) The CUSUM algorithm applied to the spike train data. Filled points represent the discrete values of gk
evaluated at the end of each ISI according to Eq. (2). The saw tooth pattern is the continuous interpolation
of g described in the text. Horizontal dashed line is the threshold level h; vertical dashed line indicates the
detection time. (E) Response of a leaky-integrate-and-6re neuron model (� = 0:150 s).

drawing analogies with neural implementations. Note that s(I) consists of a constant
term, n ln( MR1= MR0), and a term that scales linearly with the duration I of the ISI,
−nOR I . We can construct an interpolated version of g that decays linearly with a
slope of −nOR between spikes and is boosted by a constant amount n ln( MR1= MR0) upon
the arrival of a spike at the end of each ISI, as shown in Fig. 1D.
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5. CUSUM performance and statement of optimality

Once the PDFs, f0 and f1, have been de6ned, the CUSUM algorithm has only one
free parameter, the threshold level h. As h is increased, both the mean time between
false alarms MT and the mean detection delay Md will increase. This tradeoD is illustrated
in Fig. 2 for the change-detection problem formulated in Fig. 1. Empirically, the mean
number of intervals between false alarms scales exponentially with threshold level,
MT ˙ eh, while the mean detection delay (in intervals) scales linearly with threshold
level, Md˙ h. Thus, a semi-logarithmic plot of Md versus MT for the CUSUM algorithm
results in a nearly straight line, as shown in Fig. 2A.

We now consider a new quantity known as the worst mean delay, Mdwc. Just prior
to the change-point, the state variable gk (Eq. (2)) can potentially take on any value
between 0 and h due to Huctuations in the baseline activity. The worst case, in terms
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Fig. 2. Performance comparison between the optimal CUSUM algorithm (—, •) and a leaky-integrate-and-6re
neuron model (- - -, ◦) for diDerent threshold levels h. (A) Mean detection delay versus the mean time
between false alarms. (B) Worst mean detection delay versus mean time between false alarms. The mean
time between false alarms was computed from a random sequence of 106 ISIs drawn from the baseline
distribution f0. The mean detection delay was evaluated based on 103 random trials involving a change in
the underlying PDF from f0 to f1. For evaluating worst-case delays, the relevant state variable (g or v)
was set to zero just prior to the change-point.
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of detection delay, will occur when gk happens to start oD at its lowest possible value,
namely 0. The worst mean delay is always longer than the actual mean delay, and
hence provides an upper bound. Asymptotically, as MT → ∞, the CUSUM algorithm is
known to produce the minimum worst mean delay Mdwc for a 6xed mean time between
false alarms MT [1,3].

6. Leaky-integrate-and-�re as a biologically plausible implementation

How might a neuron in the brain implement a CUSUM-like detection algorithm?
The saw tooth pattern of boosts and decays seen in the interpolated version of the
CUSUM algorithm in Fig. 1D suggests a possible neural implementation. The time
course is strikingly similar to the changes in membrane potential that are associated
with integration of spike events by a postsynaptic neuron. This is illustrated using a
leaky-integrate-and-6re neuron model (Fig. 1E) in which the membrane potential obeys

dv
dt

= −v
�

+
x(t)
�
; (5)

where x(t) is the input spike train, represented as a series of delta functions. For
convenience, we have scaled the input give unity gain at DC. The membrane voltage
is integrated according to Eq. (5) until it reaches a threshold level h, at which point
an output spike is generated, signaling that a change has been detected. To parallel
the structure of the CUSUM algorithm, we can recast Eq. (5) in terms of a discrete
update rule that is evaluated at the end of each ISI Ik :

vk = vk−1 exp(−Ik =�) + 1=�: (6)

Thus the membrane voltage decays exponentially between spikes and is boosted by a
constant amount 1=� upon the arrival of a spike at the end of each ISI.

We can characterize the performance of the neuron model by plotting the mean
detection delay versus the mean time between false alarms for diDerent values of h.
However, we now have an additional free parameter—the integration time constant �.
If � is very small, the voltage will decay to zero before the next spike, and spike events
will not summate; if � is very large, summation will occur, but the system will be slow
to respond. Intuitively, there should be an intermediate value of � that will yield the
best detection performance. A full parametric study of this issue is beyond the scope
of this paper. For illustration purposes we have chosen �= 0:150 s, which was empiri-
cally determined to yield the best detection performance in this particular example. The
dashed lines in Fig. 2 show the detection performance of the leaky-integrate-and-6re
model, in comparison to the theoretically optimal CUSUM algorithm. The mean de-
tection delay of the neuron model closely approaches the CUSUM model over much
of the range (Fig. 2A), but the worst mean delay of the neuron model is considerably
worse (Fig. 2B). Unlike the CUSUM algorithm, the neuron model does not have a
reset mechanism when the accumulated evidence has swung in favor of hypothesis
H0. Thus random Huctuations in baseline activity just prior to the change-point can
allow the membrane voltage to decay signi6cantly below its baseline level, leading
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to longer detection delays. Despite poorer performance on worst-case scenarios, the
typical performance of the leaky-integrate-and-6re model is near optimal.

7. Discussion

Based on the analytical formulation of the CUSUM update rule and log-likelihood
ratio (Eqs. (2) and (4)), it might not be readily apparent how the nervous system could
implement such an algorithm. Observing the time course of the CUSUM state variable
(Fig. 1D), however, suggests that leaky integration of spike activity could provide a
biologically plausible approximation to the CUSUM algorithm. Indeed, we have shown
that a neuron model with leaky-integrate-and-6re model dynamics can approach the
performance of the theoretically optimal algorithm in one particular example (Fig. 2A).
Recently, we have used the leaky-integrate-and-6re neuron model to detect changes in
empirical spike train data recorded from primary electrosensory aDerents [2]. The results
of this empirical study reveal an impressive sensitivity of the detection algorithm to
small changes in electrosensory aDerent spike activity.
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