
ORIGINAL PAPER

M. E. Nelson á Z. Xu á J. R. Payne

Characterization and modeling of P-type electrosensory afferent
responses to amplitude modulations in a wave-type electric ®sh

Accepted: 14 June 1997

Abstract The ®rst stage of information processing in the
electrosensory system involves the encoding of local
changes in transdermal potential into trains of action
potentials in primary electrosensory a�erent nerve ®bers.
To develop a quantitative model of this encoding pro-
cess for P-type (probability-coding) a�erent ®bers in the
weakly electric ®sh Apteronotus leptorhynchus, we re-
corded single unit activity from electrosensory a�erent
axons in the posterior branch of the anterior lateral line
nerve and analyzed responses to electronically generated
sinusoidal amplitude modulations of the local trans-
dermal potential. Over a range of AM frequencies from
0.1 to 200 Hz, the modulation transfer function of P-
type a�erents is high-pass in character, with a gain that
increases monotonically up to AM frequencies of
100 Hz where it begins to roll o�, and a phase advance
with a range of 15±60 degrees. Based on quantitative
analysis of the observed gain and phase characteristics,
we present a computationally e�cient model of P-type
a�erent response dynamics which accurately character-
izes changes in a�erent ®ring rate in response to am-
plitude modulations of the ®sh's own electric organ
discharge over a wide range of AM frequencies relevant
to active electrolocation.

Key words Computer simulation á Electrolocation
Electroreception á Neural model á Sensory coding

Abbreviations AM amplitude modulation á DOF
degrees-of-freedom á EOD electric organ discharge á
ISI interspike interval á pALLN posterior branch of
anterior lateral line nerve á RMS root mean square

Introduction

The ®rst stage of information processing in the electro-
sensory system of weakly electric ®sh involves the en-
coding of changes in transdermal potential experienced
by electroreceptor organs in the skin into changes in
spike activity on primary electrosensory a�erent nerve
®bers (Bastian 1986a, 1995; Zakon 1986). During active
electrolocation, nearby objects with an impedance dif-
ferent from the surrounding water perturb the trans-
dermal potential established by the ®sh's own electric
organ discharge (EOD). In the gymnotiform species
Apteronotus leptorhynchus (brown ghost knife ®sh),
which has a continuous quasi-sinusoidal wave-type
EOD waveform, these object-induced perturbations give
rise to amplitude modulations (AMs) of the EOD car-
rier signal. Thus studying the encoding of electroloca-
tion signals by electrosensory a�erents in this species
and other wave-type electric ®sh involves determining
how a�erent spike activity is in¯uenced by AM stimuli.

Changes in transdermal potential are detected by
tuberous electroreceptor organs that are specialized for
detecting modulations of signals near the carrier fre-
quency of the EOD (Zakon 1986). In gymnotiform wave
species, tuberous a�erents can be classi®ed into two
functional categories: P units and T units (Scheich et al.
1973). Under natural conditions, T units (time coders)
®re regularly with one spike per EOD cycle, independent
of the stimulus intensity, and thus convey timing infor-
mation. P units (probability coders) ®re irregularly with
a per-cycle ®ring probability that depends on stimulus
intensity, and thus convey amplitude information. In
this paper we develop a quantitative model of the AM
response characteristics of P-type a�erent nerve ®bers in
A. leptorhynchus based on the analysis of single unit
activity recorded from axons in the posterior branch of
the anterior lateral line nerve (pALLN), which inner-
vates trunk electroreceptor organs.

Previous studies of P units in gymnotiform electric ®sh
have revealed a great deal about their AM response
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characteristics, yet some important issues remain to be
resolved. Earlier studies demonstrated that P units ex-
hibit high-pass ®ltering characteristics in response to step
and sinusoidal AM stimuli; however, there was a large
variation in the reported time constants. Studies using
AM steps reported adaptation time-constants ranging
from 0.2 to 3.4 s (Hagiwara et al. 1965; Scheich et al.
1973; Hopkins 1976; Shumway and Maler 1989). Studies
using AM sinusoids showed that the gain is monotoni-
cally increasing up to AM frequencies of at least 64 Hz
where it begins to roll o� (Bastian 1981): a high-pass ®lter
with a corner frequency near 64 Hz should have a cor-
responding time-constant in the range of 2.5 ms (1/2pf).
A recent analysis using stochastically generated AM
stimuli obtained linear ®lters for optimal stimulus re-
construction that were consistent with high-pass response
characteristics (Wessel et al. 1996). Thus, previous studies
were in agreement regarding the high-pass nature of the
response, but estimates of the dominant ®lter time-con-
stants ranged from milliseconds to seconds.

We have recently presented new experimental results
suggesting that the large variance in previously reported
time-constants may be related to our observation that
the adaptation to AM step stimuli in P-type a�erents
actually follows a time-course that is better described as
logarithmic rather than exponential (Xu et al. 1996). The
distributed dynamics that are likely to underlie the log-
arithmic adaptation time-course can give rise to appar-
ent time-constants ranging from milliseconds to tens of
seconds, depending on how the data are collected and
analyzed. In this paper we combine insights from the
study of Xu et al. (1996) which focused on P unit re-
sponses to AM steps, with new experimental results on
responses to AM sinusoids. Based on these ®ndings, we
construct a model of P-type a�erent response dynamics
which accurately characterizes responses over a wide
range of stimuli relevant to active electrolocation.

Materials and methods

A total of eight adult (12±17 cm long) weakly electric ®sh of the
species Apteronotus leptorhynchus (brown ghost knife ®sh) obtained
from local suppliers were used in this study. Fish were housed in
laboratory aquaria and maintained on a 12:12 h light-dark cycle.
Water conditions in the holding tanks were maintained at a tem-
perature of 27±28 °C, pH of 6.5±6.9, and conductivity of 200±
300 lS cm)1. Experiments were carried out in the middle of a
rectangular Plexiglas tank (41 ´ 41 ´ 15 cm). Water conditions in
the experimental tanks were adjusted to match the temperature, pH
and conductivity of the home tanks.

Surgical procedure

Fish were lightly anesthetized by immersion in 100 ppm tricaine
methanesulfonate (MS-222, Sigma) for 2 min, then immobilized
with an intramuscular injection of 3 ll of 10% gallamine tri-
ethiodide (Flaxedil, Sigma), and subsequently respirated with a
constant ¯ow of fresh aerated water provided through a mouth
tube. The EOD from the neurogenic electric organ remained intact
following the Flaxedil injection. Fish were gently held with their
right side against a foam pad on a Plexiglas stand in the middle of

the experimental tank with the dorsal surface of the head slightly
higher than the rest of the body, such that the site of surgical
exposure was just above the water level and most of the electro-
receptors on the trunk of the ®sh were submerged. The posterior
branch of the left anterior lateral line nerve, which innervates trunk
electroreceptors, was exposed approximately 1 mm rostral to the
insertion of the pectoral ®n, immediately dorsal to the lateral line.
Lidocaine hydrochloride (2%) was applied locally to the skin prior
to nerve exposure. The exposed nerve was periodically bathed in
Ringer's solution (Bastian 1974) throughout the experiment. All
surgical procedures were reviewed and approved by the Laboratory
Animal Care and Advisory Committee at the University of Illinois
at Urbana-Champaign.

Nerve recording

Action potentials from individual pALLN a�erents were recorded
with sharp glass micropipettes (impedance 10±30 MW) ®lled with
3 mol l)1 KCl solution. The recording electrode was positioned in
the intact nerve using a piezoelectric microdrive (Burleigh 7010).
Nerve activity was recorded di�erentially with a unity-gain DC
preampli®er (A-M Systems 1600), ampli®ed by an AC ampli®er
(A-M Systems 1700) with a gain of 1000, and bandpass ®ltered
between 10 Hz and 5 kHz (40 dB/decade rollo�). A reference signal
for the di�erential recording was provided by a ®ne silver wire
electrode positioned in the exposure site near the nerve, so as to
minimize the artifact from the ®sh's EOD.

The pALLN carries a�erent ®bers from both ampullary and
tuberous electroreceptors; only P-type tuberous a�erents were re-
corded in these experiments. Tuberous a�erents were identi®ed by
applying a 5-Hz sinusoidal AM ``search stimulus'' to the experi-
mental bath (see below) to preferentially excite tuberous receptors.
Ampullary receptors did not respond to this AM search stimulus. A
few T-type tuberous a�erents which are easily identi®ed by their
regular ®ring pattern at the EOD frequency were encountered over
the course of these experiments, but were not studied. The vast
majority of tuberous a�erents in the pALLN are P-type, and can be
readily identi®ed by an irregular baseline ®ring pattern which can
be modulated by the search stimulus. No attempt was made in this
study to determine the precise location of the electroreceptor organ
corresponding to each P-type a�erent ®ber. A total of 109 P-type
a�erents in eight ®sh were analyzed in this study.

Stimulation

Stimuli consisted of externally imposed AMs of the quasi-sinusoi-
dal transdermal potential established by the ®sh's own EOD. The
®sh's EOD signal was monitored with a pair of carbon electrodes
placed near the head and tail of the ®sh. AM waveform envelopes
were generated with a programmable arbitrary function generator
(Wavetek 95), scaled to the desired intensity with a programmable
attenuator (Weinschell 3210), multiplied with the EOD carrier
signal using an analog multiplier (Tucker-Davis MT3) and deliv-
ered to the experimental tank through an optical stimulus isolator
(A-M Systems 2200) via two 31-cm-long, 1.3-cm-diameter carbon
rods. The rods were placed on opposite sides of the ®sh, parallel to
the rostral-caudal axis, 17 cm from the midline. In this con®gura-
tion, current ¯ow due to external stimulation is parallel to medial-
lateral axis of the body (transverse stimulus geometry). For some
receptor locations, particularly near the tail region of the ®sh, the
AM stimulus also introduced minor phase modulations (typically
<10°). These phase modulations do not a�ect the results of our
studies, since the ®ring probability of P units is insensitive to
smooth phase modulations, such as those induced by our stimulus
(Heiligenberg and Partridge 1981).

Calibration

The AM stimulus intensity was calibrated with respect to the
transdermal potential change measured between an intramuscular
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reference electrode placed in the ®sh's back, and a recording
electrode outside the skin on the lateral trunk of the ®sh. Baseline
(unstimulated) transdermal potentials had a root mean square
(RMS) value ranging from 0.6 to 1.8 mV RMS. A zero dB stim-
ulus was de®ned as one that produced a 1 mV RMS increase in
transdermal potential. Stimulus intensities used in these studies
ranged from )40 dB (10 lV RMS) to 0 dB (1 mV RMS). When
characterizing response linearity, stimulus intensities between
)40 dB and 0 dB in 5-dB increments were used. When character-
izing the frequency dependence of response gain and phase, the
stimulus intensity was adjusted so as not to drive the unit into
®ring rate saturation or recti®cation; typical intensities were )30 to
)10 dB.

Data collection and analysis

Nerve activity, transdermal potential and timing signals were dig-
itally sampled at 17 kHz with custom data acquisition software
running on a Sun workstation (SPARCstation 2) equipped with a
multifunction data acquisition card (Analyx Systems ADDA1418-
166) and stored on magnetic disk for further processing. Spike
events in the nerve recording were identi®ed by a threshold crite-
rion and time-stamped with a resolution of 60 ls. All data analysis
procedures were carried out on Sun workstations using both cus-
tom software and the commercially available software package
MATLAB (The MathWorks).

Responses to sinusoidal AM stimuli were analyzed by con-
structing cycle histograms of a�erent spike times relative to the
stimulus cycle with 20 bins per cycle. The total stimulus duration at
each frequency was 10 s, independent of stimulus frequency. Before
constructing the cycle histograms, all spike times were shifted by
)2.5 ms to account for the mean response latency due to synaptic
and axonal transmission delays as measured from responses to AM
step stimuli. A ®xed time shift was used because the mean latency
was more reliable than the estimates obtained for individual af-
ferents. The standard deviation of the measured latency distribu-
tion was about 0.6 ms, which is re¯ected in the error bars assigned
to our phase estimates. The spike count in each bin was divided by
the product of the bin width and the total number of stimulus
cycles, such that the ordinate of the cycle histogram corresponded
to a�erent ®ring rate in spikes per second. A single cycle of a
sinusoidal waveform was ®t to the observed spike rate modulation
r(x) � A sin(2px� /)� c, where x is the cycle fraction (0 � x � 1),
A is the amplitude, / is the phase and c is the o�set. Fits were
performed by minimizing the v2 between the predicted and ob-
served rate change using a constrained optimization routine pro-
vided in the MATLAB Optimization Toolbox. The gain of the
response at each AM stimulus frequency was computed as the ratio
of the best-®t amplitude parameter for the sinusoidal spike rate
modulation to the amplitude of the AM stimulus waveform. Thus,
gain is expressed in units of spikes per second change in a�erent
®ring rate per mV RMS change in transdermal potential. The phase
of the response at each frequency was given by the best-®t phase
parameter for the sinusoidal spike rate modulation.

Parameterizing the frequency response characteristics

The frequency dependence of the gain and phase is parameterized
by a second-order linear systems model with a transfer function
H(s), given by:

H�s� � Gas
s� 1=sa

� Gbs
s� 1=sb

� Gc �1�

where s is the complex frequency (s � ix), Ga±c are gain terms with
units of spikes s)1 mV)1, sa and sb are time-constants with units of
seconds. This model is equivalent to two ®rst-order high-pass ®lters
in parallel with a constant gain element. At a particular AM
frequency f � x=2p, the overall gain is given by G( f ) � jH (s)j and
the phase of the response is /( f ) � tanÿ1(ImH (s)=ReH (s)). When
comparing responses among di�erent units, we will use a normal-

ized form of the transfer function Hnorm(s) which is rescaled to have
a normalized gain Gnorm( f ) of unity at an AM frequency of 1 Hz:

Hnorm�s� � H�s�
G1Hz

� gas
s� 1=sa

� gbs
s� 1=sb

� gc �2�

where G1Hz � G( f � 1) � H (i2p) is the overall gain at 1 Hz, and
ga, gb, and gc are dimensionless terms corresponding to Ga=G1Hz,
Gb=G1Hz and Gc=G1Hz. Best-®t parameter values for the gain and
time constant parameters in Eqs. 1 and 2 were determined by ®tting
these functional forms to the observed gain and phase data using a
v2 minimization procedure.

Computer simulations of a�erent responses

Computer simulations of P-type a�erent responses were imple-
mented in MATLAB on a Sun SPARCstation 20/712 workstation.
Numerical integration was carried out using a ®xed integration
time-step corresponding to one EOD period. Dynamic state vari-
ables in the model were updated using a numerical integration
routine (LSIM) provided in the MATLAB Control System Tool-
box that computes the exact solution to the update equations for a
linear system at each time step assuming the inputs to the system
remain constant during each step. Simulated data sets were gen-
erated using stimulus protocols that mimic those used in our ex-
perimental studies. Spike times and stimulus-related timing signals
from the simulation were stored on magnetic disk and subsequently
analyzed using the same data analysis techniques as described
above for our analysis of experimental data.

Angular dependence

In one experiment designed to study the e�ects of stimulus orien-
tation, the ®sh was suspended in the center of a 24-cm-diameter
cylindrical tank in a vertical position by means of sutures through
the upper and lower lips. Two stimulus rods mounted on a rotating
platform were placed vertically on opposite sides of the ®sh parallel
to the rostral-caudal axis 8.5 cm from the midline. By rotating the
platform holding the stimulus rods, the stimulus orientation could
be changed continuously from the normal transverse geometry (0
degrees), in which externally imposed current ¯ow is parallel to the
medial-lateral axis of the body, to stimulus angles of �90° in which
externally imposed current ¯ow is parallel to the dorsal-ventral axis
of the body.

Results

Baseline activity

Baseline ®ring rates of P-type a�erents in the presence of
the EOD but without any externally imposed stimulus
ranged from 108 to 599 spikes s)1 with a mean of
321�110 spikes s)1 (n � 109 units). The EOD frequen-
cy of individual ®sh was constant and ranged from 730 to
1002 Hz (n � 8 fish). P-type a�erents ®re at most one
spike per EOD cycle; under baseline conditions the ®ring
probability per EOD cycle ranged from 0.11 to 0.61
(Fig. 1A) with a mean of 0.36 � 0.12 (n � 109). Spike
times are loosely phase-locked to the EOD cycle, giving
rise to multimodal interspike interval (ISI) distributions
with peaks occurring at integral multiples of the EOD
period. Three representative baseline ISI distributions
are shown in Fig. 1B±D. The distribution in Fig. 1B has
a large number of single-cycle intervals and a long tail
extending out past 10 EOD periods with a mean ISI of
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4.2 EOD periods. The distribution in Fig. 1C has a
similar mean (3.9 EOD periods), but the intervals are
more tightly clustered between 2 and 6 EOD periods. The
distribution in Fig. 1D also has a similar mean (4.2 EOD
periods), but has a characteristic ``bursty'' signature with
a large number of one- and two-cycle intervals arising
from spike doublets and triplets, separated by gaps of 6±
8 EOD cycles. The ISI distributions observed in this
study do not appear to fall into distinct categories, but
rather appear to be drawn from a continuum of ISI
characteristics, ranging from irregular (Fig. 1B, D) to
regular (Fig. 1C) and from non-bursty (Fig. 1B, C) to
bursty (Fig. 1D). A quantitative approach for charac-
terizing the degree of burstiness in P-type a�erents has
been described in an earlier study (Xu et al. 1996).

Responses to single-frequency AM sinusoids

In response to single-frequency sinusoidal AM stimula-
tion, P-type a�erents typically showed a smooth sinu-
soidal modulation in ®ring rate around their baseline
rate. The gain and phase of the response to sinusoidal
AM stimulation was measured at 11 di�erent AM fre-
quencies ranging from 0.1 to 200 Hz in 99 units.
Figure 2A shows cycle histograms for one representative
P unit at the 11 AM frequencies tested. Figures 2B and
2C show the best-®t values of gain and phase at each
AM frequency as determined by ®tting a single cycle of a
sine function with variable amplitude and phase to each
cycle histogram (solid lines in Fig. 2A). The large error
bars for the high-frequency phase points (Fig. 2C) are
associated with a variability of about 0.6 ms in our
measurements of the response latency of the system.
This timing uncertainty translates into large phase un-
certainties at high frequencies (e.g., 43° at 200 Hz), but
is negligible at low frequencies (e.g., 0.2° at 1 Hz). The
variability in response latency is due to several factors,
including di�erences in axonal transmission delays,
stimulus intensity, and a�erent sensitivity. Axonal de-
lays associated with receptor location on the body are

known to be partially compensated by variations in
axon diameter (Heiligenberg and Dye 1982).

The AM transfer function is high-pass in character
with a gain that increases monotonically with increasing
AM frequency and a phase that leads the stimulus (i.e.,
the peak of the response precedes the peak of the stim-
ulus) by about 15±60°. This phase lead re¯ects the fact
that the a�erent system is sensitive to the slope as well as
the magnitude of the stimulus. The gain and phase
characteristics were strikingly similar in all 99 units
tested. To compare gain curves across units we ®rst di-
vided the gain at each frequency by the gain at 1.0 Hz to
compute a normalized gain (which is thus unity at 1 Hz).
Figure 3 shows the mean normalized gain and mean
phase of the response averaged over the population. The
small variation in response characteristics across the
population is particularly striking for AM frequencies
below 20 Hz where the coe�cient of variation (standard
deviation/mean) for normalized gain was less than 5%
and the standard deviation of the phase was less than 5°.

The solid curves in Fig. 3 are the gain and phase
corresponding to the normalized transfer function in
Eq. 2, with parameter values obtained from a minimum
v2 ®t to the population averaged response data. The
best-®t parameter values were: ga � 11:3, gb � 0:37,
gc � 0:63, sa � 0:0029 s, and sb � 0:318 s. The v2 was
11.7 for 18 degrees of freedom (DOF), indicating a good

Fig. 1A±D Baseline ®ring characteristics of P-type a�erents. A Mean
baseline ®ring probability per EOD cycle for the 109 units in the
sample. B±D Representative interspike interval (ISI) histograms for
three individual units, all of which have similar baseline ®ring rates.
The unit shown in B has an irregular ®ring pattern, while C is more
regular and D is bursty

Fig. 2A±C Response of a single P unit to transverse sinusoidal AM
stimulation at frequencies between 0.1 and 200 Hz. A Cycle
histograms showing the modulation in a�erent ®ring rate with respect
to the stimulus cycle for the 11 AM frequencies tested. Histogram
values are plotted in a stairstep fashion. The continuous solid lines are
best-®t single cycle sinusoids.Vertical dotted lines indicate the times of
the maximum and minimum of the AM stimulus waveform. B Gain
versus AM frequency for this unit, as determined from the sinusoidal
®ts in A. Error bars are smaller than the plot symbols and therefore
not visible. C Phase versus AM frequency for this unit, as determined
from the sinusoidal ®ts in A. Error bars re¯ect the combined
uncertainty from the ®t and an uncertainty associated with the
absolute response latency which results in larger error bars for higher
AM frequencies
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®t to the data. Figure 4 illustrates the contributions
of the three terms in Eq. 2 to the overall gain and phase
of the response. For AM frequencies above about
20 Hz, the gain and phase are dominated by the con-

tribution of the ®rst term in Eq. 2, corresponding to a
high-pass ®lter with a time-constant sa � 0:0029 s (da-
shed line in Fig. 4). For AM frequencies below about
0.2 Hz, the response is dominated by the constant gain
term gc (dotted line in Fig. 4). For intermediate AM
frequencies between about 0.2 and 20 Hz, all three terms
make a signi®cant contribution to the response.

The linear systems model in Eq. 2 was also used to ®t
the AM frequency response data from each of the 99
units individually. Figure 5 summarizes the best-®t pa-
rameter values obtained from ®ts to individual unit re-
sponses. The means and standard deviations for the
best-®t parameter values were: ga � 14:1� 7:7, gb �
0:47� 0:11, gc � 0:67� 0:06, sa � 0:0026 �0:0013 s,
and sb � 0:21� 0:07 s. The mean v2 per DOF was
1.39 � 1.44, indicating that Eq. 2 provided a good ®t to
the individual unit responses; the distribution of v2 per
DOF is shown in Fig. 5F. The parameter distributions
in Fig. 5A±E appear to be predominantly unimodal and
thus suggest that the a�erents in this sample are drawn
from a population with homogenous response dynamics,
consistent with the small standard deviations in the
population averaged gain and phase data shown earlier
in Fig. 3.

Fig. 3A,B Population-averaged P unit response characteristics.
AMean normalized gain versus AM frequency.BMean phase versus
AM frequency. Error bars represent the standard deviation of the
population average at each frequency. The continuous solid lines show
the gain and phase from a linear systems model of the form given in
Eq. 2 with best-®t parameters: ga � 11:3, gb � 0:37, gc � 0:63,
sa = 0.0029 s, and sb = 0.318 s

Fig. 4A,B Individual contributions of the high-pass ®lter and
constant gain terms in Eq. 2 to the overall response shown in
Fig. 3. A Normalized gain versus AM frequency. B Phase versus AM
frequency. Dashed line: Ha(s) � gas=(s� 1=sa); dash-dot: Hb(s) �
gbs=(s� 1=sb) dotted: Hc( s)� gc; solid line: Hnorm(s) � Ha(s)�
Hb(s) �Hc(s). Note that the overall gain and phase cannot be
computed by simply summing the component gains and phases,
but at frequencies where the gain of one of the components
Gx( f )(� jHx�s�j) is much larger than the other two, G( f ) � Gx( f )
and /�f � � /x( f )

Fig. 5A±F Summary of results obtained from ®ts of the form in Eq. 2
to individual P unit frequency response pro®les. A±E Distribution of
best-®t values for ga, sa, gb, sb and gc, respectively. F Distribution of
the v2 per degrees-of-freedom (DOF), a measure of the goodness-of-®t
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Estimating absolute response sensitivity

The sensitivity of tuberous a�erents is inherently direc-
tional (Yager and Hopkins 1993), presumably as a result
of the structural organization of the electroreceptor or-
gan. To verify that the a�erent response amplitudes we
measured are indeed dependent on stimulus angle, a
control experiment was carried out in which a ®sh was
suspended vertically and the stimulus angle could be
changed by rotating a pair of stimulus rods about the
vertical axis. Figure 6 shows a typical response pro®le
from one of the nine units recorded in this study, dem-
onstrating an approximately sinusoidal dependence of
the response amplitude on stimulus angle.

Except for the data shown in Fig. 6, all responses in
this study were collected using a ®xed transverse stim-
ulus geometry (see Materials and methods). Therefore,
the quantity we have measured is the ``transverse'' gain
of the a�erents, namely the sensitivity to transdermal
potential modulations imposed in a transverse direction
(lateral to medial) across the body of the ®sh. For the
units in our sample the transverse gain at 1 Hz, G1Hz,
ranged from 142 to 2045 spikes s)1 mV)1 with a mean of
626 � 328 spikes s)1 mV)1 (n � 99), as shown in Fig. 7.
The transverse gain is typically less than the maximum
gain which would be observed at the optimal stimulus
orientation.

Response linearity

The output dynamic range of P-type a�erents is limited
in that they exhibit both ®ring rate recti®cation (®ring
rates cannot be less than zero) and ®ring rate saturation
(®ring rates cannot exceed the EOD frequency); thus,
strong AM stimuli can give rise to non-linear P unit
responses. For weaker AM stimuli that do not drive the

units into recti®cation or saturation, we found that af-
ferent responses scaled almost linearly with stimulus
amplitude. Figure 8A shows responses to a 1-Hz AM
stimulus with intensities ranging from ±40 dB to 0 dB;
note the marked clipping of the response for the 0 dB
stimulus. The solid curves in Fig. 8A are single cycle
sinusoids ®t to the non-clipped portion of the cycle
histograms. The amplitudes of these best-®t sinusoids
are plotted as a function of stimulus intensity in Fig. 8B,
showing that the response scales almost linearly with
stimulus amplitude. The solid line in Fig. 8B shows the
best-®t to the stimulus-response data assuming perfect
linearity (i.e., y � Ax, where y is the response amplitude
and x is the stimulus intensity), while the dashed line in
Fig. 8B shows the best-®t power law form (y � AxB)
which provides a slightly better ®t to the data with
B � 0:89. Response linearity was analyzed in this man-

Fig. 6A, B In¯uence of stimu-
lus orientation on apparent gain
of P units. A Firing rate mod-
ulations in response to a 1-Hz
AM sinusoidal stimulus applied
at various stimulus angles;
transverse stimulation corre-
sponds to 0°. B Apparent gain
as a function of stimulus angle.
The continuous solid curve is a
best-®t sinusoid. Vertical error
bars represent uncertainties in
gain; horizontal error bars rep-
resent uncertainties in the an-
gular position relative to the
receptor pore

Fig. 7 Distribution of the transverse gain of P units at an AM
frequency of 1 Hz. Transverse gain is a measure of the sensitivity of P
units to stimuli delivered using the ®xed transverse stimulus geometry
described in the Materials and methods section. The transverse gain is
typically less than the maximum gain that would be measured with an
optimally oriented stimulus
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ner for 24 units in ®ve ®sh and in all cases the power law
form gave a slightly better ®t to the data. The best-®t
values for B ranged from 0.83 to 0.95 with a mean of
0.90 � 0.04 (n � 24). Figure 8C illustrates the shape of
the clipping non-linearity by comparing the ®ring rate
predicted by the best-®t (unclipped) sinusoid to the ac-
tual measured ®ring rate for each data point in Fig. 8A.

Another test for response linearity involves compar-
ing the response of a system to stimuli presented indi-
vidually to the response when the stimuli are presented
together. For a linear system, the response to a sum of
input signals should be equal to the sum of the responses
for each input alone. We tested the linearity of P-type
a�erents by comparing responses to single frequency
AM sinusoids of 1, 10 and 100 Hz with responses to a
combination of these three frequencies presented
simultaneously. For each frequency component, we
compared the gain and phase measured with all three

frequencies combined (Gcombined, /combined) relative to
the gain and phase when each frequency was presented
in isolation (Galone, /alone). The mean fractional gain
change (Gcombined±Galone)/Galone was 0.001�0.02,
0.03�0.05, and ±0.14�0.09 for 1, 10 and 100 Hz, res-
pectively (n � 10). The mean phase change (/com-

bined±/alone) was 1.2 � 1.8°, 2.6 � 1.5° and 34 � 12°
for 1, 10 and 100 Hz, respectively (n � 10). Thus, when
all three frequencies were presented together there was
no signi®cant change in gain or phase for the 1 and
10 Hz components, while there was a modest 14% gain
decrease and 34° phase advance for the 100-Hz com-
ponent. This suggests that there are only minor non-
linearities associated with cross-frequency interactions in
this AM frequency range.

An integrated model of P-type a�erent
response dynamics

We have incorporated the response characteristics il-
lustrated in Figs. 1±8 into an integrated model of P-type
a�erent response dynamics. The model, illustrated in
Fig. 9, consists of three key elements: (1) a linear systems
model that captures the frequency dependence of the
AM response characteristics, (2) a static non-linearity
that models the e�ects of ®ring rate recti®cation and
saturation, and (3) a stochastic spike generator that
transforms continuous ®ring rates into trains of discrete
spikes that are phase-locked to the EOD cycle. The
model also incorporates the baseline ®ring rate and takes
into account the latency in the response due to synaptic
delays and axonal propagation delays. The linear sys-
tems portion of the model is based on Eq. 1 with pa-
rameter values determined from ®ts to gain and phase
response data. The time-domain response of the linear
model is given by the following pair of equations:

_x � Ax� Bu

y � Cx� Du
�3�

Fig. 8A±C E�ects of stimulus intensity on P unit response amplitude.
A Cycle histograms for a representative unit showing the modulation
in a�erent ®ring rate for a 1-Hz stimulus with intensities from)40 dB
(10 lV RMS) to 0 dB (1 mV RMS). Histogram values are shown as
data points; best-®t sinusoids are shown as continuous solid lines.
B Response amplitude versus stimulus intensity for the unit shown in
A (data points). The solid line is the best-®t linear response function
(y � 937x); the dashed line is the best-®t power law function
(y � 829x0:89). C Comparison of actual response amplitude versus
®t amplitude for all the cycle histogram data points inA. The solid line
represents the clipping non-linearity (Eq. 5) associated with ®ring rate
recti®cation and saturation

Fig. 9 Model of P-type electrosensory a�erent response dynamics.
The model input is the time-varying amplitude of the AM stimulus
envelope u(t). The stimulus is transformed by the linear model as
described by Eq. 1, which consists of three elements in parallel: two
®rst-order high-pass ®lters and a constant gain term. The output of
the linear model is delayed to simulate the e�ects of synaptic and
axonal propagation delays, a constant baseline ®ring rate is added,
and the resulting signal is passed through a static non-linearity which
incorporates the e�ects of ®ring rate recti®cation and saturation. The
instantaneous ®ring rate r(t) is then converted into a binary spike train
s(t) by a stochastic spike-generating element
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where u(t) is the time-varying envelope of the AM
stimulus, y(t) is the output and x(t) is a vector of two
internal state variables associated with the two high-pass
®lters shown in Fig. 9.

A � ÿ1=sa 0

0 ÿ1=sb

� �
B � Ga=sa

Gb=sb

� �
C � �ÿ1ÿ1�

D � �Ga � Gb � Gc� �4�
The output of the linear model y(t) is delayed by an
amount td, and a baseline ®ring rate rbase is added:
z(t) � y(t ÿ td)� rbase. The signal z(t) is the input to a
clipping non-linearity which incorporates the e�ects of
®ring rate recti®cation and saturation:

r�t� �
0 z(t) < 0
z�t� 0 � z(t) � fEOD
fEOD z(t) > fEOD

8<: �5�

where r(t) is the output ®ring rate, and fEOD is the EOD
frequency.

A stochastic spike-generating element converts the
output ®ring rate r(t) into a binary spike train s(t). In its
simplest form, the spike-generating element computes
the probability p(t), of generating a spike on each EOD
cycle from the ratio of the input ®ring rate to the EOD
frequency, p(t) � r(t)=fEOD. Since r(t) is bounded be-
tween 0 and fEOD by Eq. 5, the resulting per-cycle ®ring
probabilities p(t) are bounded between 0 and 1. The
®ring probability p(t) is then compared with a random
number g chosen from a uniform distribution between 0
and 1 in order to determine whether or not to generate a
spike event on each EOD cycle:

s�t� � 0 g > p(t)
1 g � p(t)

�
�6�

The output spikes are initially generated at times
corresponding to integral multiples of the EOD period.
A small amount of time jitter is then added to simulate
the degree of phase locking observed in the data. The
time jitter for each spike is drawn from a normal dis-
tribution of random numbers with a zero mean and a
standard deviation equal to 8% of the EOD period, as
determined from an analysis of the widths of individual
peaks in the experimental ISI histograms (Fig. 1B±D).
An absolute refractory period equal to one EOD cycle is
implemented, based on the observation that the ®rst
peak in the experimental ISI histograms is asymmetric
and typically contains no intervals less than one full
EOD period.

In an extended version of the spike-generating ele-
ment, the ®ring regularity can be controlled with an
additional parameter m. For m > 1, the extended model
implements m independent random subprocesses each
with an event rate equal to the spike rate r(t). Each
subprocess is simulated as described above using an
update time step equal to the EOD period. Output
spikes are generated at the time of occurrence of every
mth subprocess event. All other aspects of the model are
as described above. Figure 10 shows representative

baseline ISI distributions generated by the extended
model for di�erent values of m. A value of m � 1 pro-
duces an irregular ®ring pattern with an ISI distribution
similar to that in Fig. 1B. A value of m � 8 produces a
more regular ®ring pattern with an ISI distribution
similar to that shown in Fig. 1C.

Comparisons between experimental
and simulated data sets

Figure 11 shows a representative comparison between
experimental and computer simulated P unit response
data. The simulated data set was generated using the
computational model shown in Fig. 9 with a total of
seven model parameters determined from ®ts to the ex-
perimental data: three gain terms Ga±c and two time-
constants saÿb in Eq. 1, the EOD frequency fEOD in
Eq. 5, and the parameter m controlling spike regularity.
Once the parameters of the a�erent model had been
determined, computer simulations were carried out
using a stimulus paradigm that was identical to that used
in our experimental studies; thus, simulated data sets
and experimental data sets could be analyzed using the
same data analysis programs. As shown in Fig. 11, the
model does an excellent job of reproducing the key
features of the experimental data. Note that the simu-
lated step response data (Fig. 11B2) exhibits slightly
more spike rate variability than the actual data
(Fig. 11B1). This is due to the fact that our spike gen-
eration model is based on ®rst-order ISI statistics and
does not include higher-order correlations. The vari-

Fig. 10A±D Baseline interspike interval distributions produced by the
stochastic spike-generating element in our model. A±D Distributions
of increasing spike regularity with m � 1,2,4, and 8, respectively. All
four ISI distributions have a mean of four EOD periods
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ability in the high-frequency phase characteristics, ap-
parent in both the experimental (Fig. 11D1) and simu-
lated (Fig. 11D2) data sets, is associated with the overall
variability in the response latency of the system.

The good agreement between experimental and sim-
ulated data sets in Fig. 11 is not too surprising, since the
simulation was evaluated under the same conditions that
were initially used to determine the model parameters. A
more demanding test of the model involves comparing
experimental and simulated data sets in response to a
novel stimulus. To make this comparison, we con-
structed a complex AM stimulus waveform by passing
Gaussian noise through a fourth-order Butterworth ®l-
ter with a cuto� frequency of 5 Hz. The cuto� was
chosen to emphasize AM frequency components that are
probably of most relevance to prey detection using the
active electric sense (see Discussion). This computer
generated noise signal (Fig. 12A) was then used as the
AM stimulus for obtaining both experimental and sim-
ulated a�erent responses. Figure 12B shows a compari-
son between the experimentally measured change in
a�erent ®ring rate (data points) averaged over 20 pre-
sentations of the AM stimulus and the predictions of the
simulation model (continuous solid curve). The excellent
agreement between experimental data and the model
prediction can be better appreciated by looking at the

residuals as shown in Fig. 12C. Note that the degree of
scatter in the residuals during the stimulation (0 £ t £ 5)
is comparable to the scatter during the prestimulus in-
terval (t < 0) when the ®ring rate is constant, indicating
that the residuals are consistent with variance inherent in
the experimental data points. Thus, the model is capable
of accurately predicting responses to complex AM
waveforms, such as those that might be encountered
during natural electrolocation behaviors.

Discussion

New insights into P unit response dynamics

Our experimental results are in general agreement with
previous studies by other investigators (Hagiwara et al.
1965; Scheich et al. 1973; Hopkins 1976; Shumway and
Maler 1989), but our analysis provides some additional
useful insights into the key features of P unit response
dynamics. One important ®nding concerns the signi®-
cance of the fast time-constant sa (Eq. 1), which we ®nd
to be approximately 2.5 ms (see Fig. 5B). As discussed
in the Introduction, earlier studies have reported much
longer time-constants, in the range of a few tenths of a
second to several seconds. In this study, we ®nd that our
model must contain a fast time-constant with a value in
the range of a few milliseconds in order to ®t the high-
frequency AM response characteristics. As shown in
Fig. 4A, this fast time-constant dominates the AM fre-

Fig. 11A±D Comparison of experimental (A1±D1) and simulated
(A2±D2) data sets. A Baseline interspike interval distribution.
BResponse to an AM step stimulus (1 s duration,)10 dB amplitude).
C Normalized gain versus AM frequency. D Phase versus AM
frequency

Fig. 12 Comparison of experimental and model responses to a
complex AM stimulus. A AM stimulus envelope generated by passing
Gaussian noise through a low-pass ®lter with a cuto� frequency of
5 Hz. B Predicted (solid line) versus measured (data points) change in
a�erent ®ring rate. C Residual error between predicted and measured
response
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quency response characteristics for frequencies higher
than about 20 Hz. This important component of P unit
response dynamics had been missed in previous studies
using AM step stimuli because the data were typically
analyzed using bin widths that were too large to observe
the rapid adaptation in the ®rst few milliseconds of the
response. Our recent study of P unit responses to AM
step stimuli in A. leptorhynchus has veri®ed that such
fast adaptation components are indeed present in the
step response data (Xu et al. 1996).

Although it was missed in earlier AM step response
studies, the fast component of P unit response dynamics
was implicit in the sinusoidal AM frequency response
data presented by Bastian (1981), but he did not ex-
plicitly interpret the data in this way. Bastian's data
showed that the gain of P units in Apteronotus albifrons
is monotonically increasing up to AM frequencies of at
least 64 Hz followed by a rollo� at higher frequencies
(Bastian 1981). A high-pass ®lter with a corner fre-
quency near 64 Hz should have a corresponding time-
constant in the range of 2.5 ms (1/2pf ), in good agree-
ment with the value of sa obtained in this study.

Whereas Bastian observed a signi®cant rollo� in gain
for AM frequencies above 64 Hz in A. albifrons, we
found that the gain in A. leptorhynchus continues to
increase up to 100 Hz and then ¯attens out, but does not
roll o� signi®cantly (see Fig. 3). This may be due to a
species di�erence, or perhaps due to a di�erence in data
analysis techniques. Based on the observed high-fre-
quency rollo�, Bastian suggested that P units might be
tuned to optimally detect AM modulations near 64 Hz.
Since we do not observe a signi®cant high-frequency
rollo� in our data our interpretation is somewhat dif-
ferent. Our results suggest that P units in A. lepto-
rhynchus are not tuned to a particular AM frequency,
but rather that high-frequency components of the input
signal are simply weighted more heavily than low-fre-
quency components.

The increased weighting of high-frequency compo-
nents may possibly arise from a need to maintain sen-
sitivity across a broad range of AM frequencies when
faced with an input amplitude spectrum that is likely to
be dominated by low-frequency components. Although
no quantitative experimental data on the frequency
components of natural electrosensory scenes exists, we
can gain some insight by making comparisons with the
statistical properties of natural visual scenes, where the
amplitude spectrum is known to vary approximately
inversely with spatial frequency (i.e., a 1/f amplitude
spectrum) (Field 1987; Ruderman and Bialek 1994).
Electrosensory images are likely to be even more domi-
nated by low frequencies than visual images due to the
lack of a peripheral focusing mechanism (such as the
lens of the eye) which results in electrosensory images
that are increasingly blurred with increasing object
distance (Rasnow 1996). If the electrosensory system is
to maintain sensitivity to subtle high-frequency compo-
nents of natural images while preventing the a�erents
from being driven into recti®cation or saturation by the

more intense low-frequency components, then the pri-
mary a�erents need to have intrinsic response dynamics
that emphasize the high-frequency end of the input
spectrum.

A�erent sensitivity

We measured the mean transverse gain of P-type a�er-
ents at 1 Hz to be 626 � 328 spikes s)1mV)1 (Fig. 7).
In Apteronotus, tuberous electroreceptor organs on the
trunk tend to be clustered along the dorsal and ventral
surfaces with a density of about 2±3 per mm2, compared
with about 1 per mm2 along the midline (Carr et al.
1982). Thus, the transverse stimulus geometry used in
this study, which is optimally oriented for units along
the midline, was not optimal for most of the units in the
sample. If we model the density distribution q(h) of
electroreceptor organs around the trunk as
q�h� � 2ÿ cos�h), where h values of +90, 0, and )90
correspond to dorsal, midline, and ventral positions
respectively, and model the transverse gain as propor-
tional to cos�h), we estimate that the mean response
attenuation for a transverse stimulus relative to an op-
timally oriented stimulus, averaged over the population
of units, is 0.57. Thus, we estimate that the average gain
of P units for an optimally oriented 1-Hz stimulus would
be about 1100 spikes s)1mV)1.

Sensitivity to weak AM stimuli

Behavioral and physiological thresholds in Apteronotus
have been estimated to be in the region of 0.1 lV RMS
(Rasnow 1996). To estimate a�erent responses to such
weak stimuli requires extrapolating from stimulus-re-
sponse data obtained using stronger stimuli. As illus-
trated in Fig. 8B, the results of the extrapolation depend
critically on assumptions about response linearity. One
convenient benchmark for describing a�erent sensitivity
to weak stimuli is to quote the stimulus intensity that
causes a 1 spike s)1 change in a�erent ®ring rate (Bastian
1981). Assuming a power law form y � AxB and solving
for the stimulus strength x when y � 1 spike s)1 yields
x � Aÿ1=B, where A is the gain and B is the power law
exponent. Using a gain value of A � 1100 spikes
s)1mV)1 from the above analysis and a linear extrapo-
lation (B � 1) (cf. solid line in Fig. 8B), we predict that a
1 spike s)1 change can be elicited by a 0.9-lV RMS
stimulus. If we use the same value of A, but extrapolate
using our best-®t value of B � 0:9 (cf. dashed line in
Fig. 8B), we predict that 0.42 lV RMS is su�cient to
elicit a 1 spike s)1 change, which is a factor of 2 smaller
than obtained from the linear extrapolation. In general,
power law extrapolations with B < 1 predict greater
a�erent sensitivity at low stimulus strengths than a linear
extrapolation with B � 1.

In a study of P units in A. albifrons, Bastian (1981)
reported a best-®t power law exponent of B � 0:77 and
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estimated that a 1 spike s)1 change in a�erent ®ring
corresponded to a ®eld strength of 0.9 lV cm)1 peak-to-
peak measured in the water outside the ®sh. Using es-
timates of skin and water resistivity, Rasnow (1996)
computed that this ®eld strength corresponds to a
0.1 lV RMS change in transdermal potential. If Bastian
had used a linear extrapolation (B � 1) rather than a
power law extrapolation with B � 0:77, his prediction
would have been about 0.8 lV RMS change in trans-
dermal voltage, which is in good agreement with our
linear extrapolation of 0.9 lV RMS. Based on the un-
certainties in the best-®t power law exponent, we con-
clude that existing data is consistent with a 1 spike s)1

change in a�erent ®ring rate corresponding to a change
in transdermal potential somewhere in the range of 0.1±
1.0 lV RMS. It should be noted that these numbers are
for a 1-Hz AM stimulus. A�erents will be more sensitive
to higher AM frequencies and less sensitive to lower AM
frequencies, as summarized in Fig. 3.

Implications for detection of small prey

It is informative to compare these numbers with esti-
mates of the transdermal potential modulations gener-
ated by natural electrolocation targets. We are currently
carrying out infrared video recording experiments of
prey capture in A. albifrons and A. leptorhynchus and
have observed qualitatively similar behavior in these two
species. In A. albifrons we have obtained preliminary
quantitative data showing that Daphnia magna (2±3 mm
diameter) can be detected in the absence of visual cues at
a distance of about 2 cm when the ®sh is swimming at a
typical search velocity of about 10 cm s)1 (MacIver et al.
1997). Based on the physics of electric image formation
for spherical objects, the peak transdermal potential
modulation for a 3 mm diameter sphere, 2 cm from the
midline, is about a 0.2 lV RMS increase for a perfect
conductor and a 0.1 lV RMS decrease for a perfect
insulator (Rasnow 1996). While we do not have experi-
mentally measured conductivity values for Daphnia, the
preceding values set bounds on the magnitude of the
voltage change. To determine how strongly P units
would respond to a stimulus of this magnitude we also
need to know the corresponding AM frequency spec-
trum. Again using results from Rasnow (1996), the full
width at half maximum for the electric image cast by a 3-
mm sphere at a distance of 2 cm from the electrore-
ceptor array is estimated to be about 2 cm. The spatial
frequency components of this image, computed from the
Fourier transform, have a spectrum with a half-ampli-
tude bandwidth of about 0.22 cycles cm)1. When the
image is moving with a velocity of 10 cm s)1 across the
receptor array, this gives rise to a temporal frequency
spectrum with a bandwidth of about 2.2 Hz. Thus,
around the time of detection, the image cast by a
Daphnia is estimated to have a peak magnitude of about
0.1 lV RMS and an AM frequency bandwidth of about
2.2 Hz. Using the a�erent gain extrapolations for weak

stimuli at 1 Hz described above, this corresponds to a
change in a�erent ®ring rate between 0.1 and 1.0 spi-
kes s)1. Such a small change could not be detected on an
individual a�erent ®ber due to the intrinsic variability in
a�erent spike rate, but the electric image in¯uences a
signi®cant number of a�erent ®bers; for a typical trunk
receptor organ density of 1±2 mm)2, there will be ap-
proximately 300±600 electroreceptor organs within the
2-cm-diameter region corresponding to the image full
width at half maximum.

The above discussion is not intended to suggest that
AM signals provide the only possible sensory cue for
prey localization in the dark. Small prey can potentially
generate phase shifts which could be detected by T-type
tuberous receptor organs, low-frequency electrical sig-
nals which could be detected by ampullary receptors,
and mechanical vibrations which could be detected by
mechanosensory lateral line receptors.

Extensions to the model
to accommodate longer time scales

The lowest frequency sinusoidal AM stimulus used in
this study was 0.1 Hz which, if taken as the corner fre-
quency of a ®rst-order ®lter, would correspond to a
time-constant of 1.6 s. Thus, the experimental data
collected in this study cannot provide insights into
components of P unit response dynamics that corres-
pond to longer time scales. From our recent study of P
unit responses to prolonged AM steps, we know that the
®ring rate of P units continues to adapt slowly for time
periods up to several hundred seconds after the step
onset, implying that the response dynamics includes
slow components (Xu et al. 1996). Analysis of the AM
step response data demonstrated that the time-course of
sensory adaptation in P units could be accurately de-
scribed by a functional form in which the change in
a�erent ®ring rate Dr decays logarithmically with time
according to an equation of the form: Dr �
A=(Bln(t) �1). This form accurately describes the adap-
tation time-course of P-type a�erents over ®ve decades
in time from milliseconds to hundreds of seconds using
only two free parameters. Figure 13A compares the
normalized adaptation time-course in response to an
AM step stimulus predicted by the logarithmic decay
function (dashed line) and the normalized step response
predicted by the linear model of Eq. 2 (solid line),
Drstep � gaeÿt=sa � gbeÿt=sb � gc, using the same parame-
ters as in Fig. 3: ga � 11:3, gb � 0:37, gc � 0:63,
sa � 0:0029 s, and sb � 0:318 s. In general the curves are
similar, but the linear model of Eq. 2 predicts a lower
®ring rate for times between about 10 and 100 ms, and
predicts a higher ®ring rate for times greater than 1 s.
Since our experimental data using AM sinusoids do not
provide insights into the response dynamics for time
scales longer than about 1 s, we can use the logarithmic
parameterization of the step response data from Xu et al.
(1996) to adapt the linear model of Eq. 2 to give a better
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approximation of the long time scale behavior by adding
a third slower time-constant:

Hnorm�s� � gas
s� 1=sa

� gbs
s� 1=sb

� gslows
s� 1=sslow

� g0c �7�

where ga±b and sa±b are the same as in Eq. 1, but the
constant gain term gc in Eq. 1 has been replaced by two
terms: a high-pass ®lter term with gain gslow and time-
constant sslow and a new constant gain term g0c. Fig-
ure 13B compares the logarithmic adaptation time-
course (dashed line) with the modi®ed form of the linear
model in Eq. 2 with g0c � 0:6 gc, gslow � 0:4 gc, and
sslow � 10 s. The modi®ed model of Eq. 7 does a good
job of describing the continued ®ring rate adaptation for
times longer than 1 s.

From a practical point of view, the decision of
whether to use the two-time-constant model of Eq. 2 or
the three-time-constant model of Eq. 7 in a computer
simulation study depends on whether the stimulus par-
adigm being simulated will involve prolonged AM steps
or signals with slow (<0.1 Hz) AM frequency compo-
nents. For example, some of the classic gain control
experiments (Bastian 1986b, c) and pyramidal cell ad-
aptation studies (Bastian and Courtright 1991) in the
electrosensory lateral line lobe were carried out using
prolonged AM steps to mimic steady-state increases or

decreases in the ®sh's EOD strength. Thus, the three-
time-constant model of Eq. 7 would yield a more accu-
rate description of P unit responses under these condi-
tions than the model of Eq. 2.

Interpretation of model parameters

As shown in Xu et al. (1996), the time-course of sensory
adaptation in P units could be accurately described by
the logarithmic decay function Dr � A=�Bln�t� � 1)
using just two free parameters, whereas ®tting the ad-
aptation time-course using a sum of exponentials
Dr�t� � A1e

ÿt=s1 � A2e
ÿt=s2 � � � � � Ane

ÿt=sn � C required
a total of nine free parameters (four time-constants, four
corresponding amplitude parameters, and one constant
term) to produce a ®t with a v2 per DOF comparable to
that obtained with the two-parameter logarithmic form.
Given that the logarithmic form provides a more e�-
cient description of the adaptation time-course than a
multiexponential form, it is natural to ask why we chose
to construct our transfer functions in this paper (Eqs. 1,
2, 7) from a sum of linear ®rst-order high-pass ®lter
terms that have exponential step responses, rather than
using a non-linear di�erential equation with a logarith-
mic step response. The principal reason for this choice is
associated with the observation that P units have nearly
linear response characteristics, as determined from
analysis of intensity response pro®les (Fig. 8B) and tests
of responses to sums of sinusoids with di�erent AM
frequencies. Linear response characteristics can be en-
sured by summing the contributions of multiple linear
components, such as the ®rst-order high-pass ®lters used
in our model. This consideration of response linearity
led us to the formulation used in this paper.

As described in Xu et al. (1996), P unit response
dynamics appear to involve time scales ranging contin-
uously from milliseconds to tens of seconds. This wide
range of time scales is likely to arise from multiple
spatially and temporally distributed relaxation processes
covering a wide range of time-constants, as has been
proposed as a basis for power law adaptation observed
in other systems (Thorson and Biederman-Throson
1974). Thus, the time-constants sa, sb, and sslow reported
in this study should not be assumed to correspond to
discrete underlying biophysical processes, but should be
thought of as terms in a series expansion in which ®rst-
order high-pass ®lter elements are used as a basis set for
approximating the higher-order distributed dynamics of
P-type a�erents.

Scope and limitations of the model

The model of P-type a�erent response dynamics de-
scribed in this paper was designed to serve as part of
an integrated computational model of electrolocation,
with a scope that extends from peripheral electric im-
age formation (Rasnow 1996) to adaptive ®ltering in
the electrosensory lateral line lobe (Bastian 1995). In

Fig. 13A,B Model predictions for the adaptation time-course of
P-type a�erents in response to a prolonged AM step stimulus shown
on a logarithmic time scale. A Comparison of the logarithmic
adaptation model (Xu et al. 1996): Dr � A=(B ln(t) �1) with
A � 0:64 and B � 0:15 (dashed line) and the two-time-constant model
of Eq. 2 (solid line) using best-®t parameters from Fig. 3: ga = 11.3,
gb = 0.37, gc = 0.63, sa = 0.0029 s, and sb = 0.32 s. B Comparison
of the same logarithmic adaptationmodel (dashed ) shown inA and the
three-time-constant model (solid ) of Eq. 7; note the improved
agreement for times greater than 1 s. Parameter values: ga = 11.3,
gb = 0.37, gslow = 0.25, g0c � 0:37, sa = 0.0029 s, sb = 0.32 s, and
sslow = 10.0 s
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this context, the two principal design goals for the
a�erent model were that it accurately describe the
sensory encoding process over the range of AM fre-
quencies that is relevant for electrolocation behaviors,
and that the model be computationally e�cient, so
that it would be possible to simulate the responses of
the entire population of several thousand P-type af-
ferents during a typical behavioral sequence lasting
several seconds. These design goals led to the devel-
opment of an empirical model of a�erent response
dynamics in which the essential dynamic characteristics
are captured using a relatively small number of ex-
perimentally constrained parameters, rather than to the
development of a biophysically detailed model of the
underlying mechanisms. A more biophysically based
model, such as that developed recently by Kashimori
et al. (1996), would have involved a signi®cantly larger
number of di�erential equations for updating dynamic
state variables, and a correspondingly larger number of
model parameter values, many of which would be re-
lated to cellular and synaptic processes for which we
do not have good experimental constraints. Whereas
the Kashimori model is concerned primarily with elu-
cidating microscopic mechanisms at the single receptor
cell level, our model is focused on accurately charac-
terizing the macroscopic dynamic properties of the
a�erent system as a whole, and thus we see these ef-
forts as complementary. As a result of the tradeo�s
inherent in reducing the amount of biophysical detail
to increase computational e�ciency, the model pre-
sented in this paper can only be used to simulate P
unit responses to those stimuli for which it was de-
veloped, namely amplitude modulations of a ®xed-
frequency carrier signal corresponding to the ®sh's own
EOD. As currently formulated, the model is not ap-
propriate for accurately predicting P unit responses to
signals arising from interactions with other weakly
electric ®sh, such as jamming interactions or electro-
communication signals, or responses to externally im-
posed electrical stimuli at frequencies other than the
®sh's own EOD frequency.
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