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Electrophysiological models
of neural processing
Mark E. Nelson∗

The brain is an amazing information processing system that allows organisms
to adaptively monitor and control complex dynamic interactions with their
environment across multiple spatial and temporal scales. Mathematical modeling
and computer simulation techniques have become essential tools in understanding
diverse aspects of neural processing ranging from sub-millisecond temporal coding
in the sound localization circuity of barn owls to long-term memory storage
and retrieval in humans that can span decades. The processing capabilities
of individual neurons lie at the core of these models, with the emphasis
shifting upward and downward across different levels of biological organization
depending on the nature of the questions being addressed. This review provides
an introduction to the techniques for constructing biophysically based models
of individual neurons and local networks. Topics include Hodgkin-Huxley-type
models of macroscopic membrane currents, Markov models of individual ion-
channel currents, compartmental models of neuronal morphology, and network
models involving synaptic interactions among multiple neurons.  2010 John Wiley &
Sons, Inc. WIREs Syst Biol Med 2011 3 74–92 DOI: 10.1002/wsbm.95

INTRODUCTION

Understanding the electrophysiological basis of
neural coding, communication, and information

processing is central to modern neuroscience research.
Mathematical modeling and computer simulation
have become an integral part of the neuroscientist’s
toolbox for exploring these phenomena at a variety
of levels of organization, from the biophysical basis
of current flow through individual ion channels, to
the modeling of aspects of cognitive function arising
from the distributed activity of large populations of
neurons. Neural models can be constructed at many
levels of abstraction. Some types of scientific questions
can be addressed using highly reduced models that
treat neurons as simple threshold devices, whereas
other questions require detailed models of membrane
biophysics and intracellular signaling networks.

This article will focus on the tools and techniques
for constructing biophysically detailed compartmental
models of individual neurons and local networks.1,2

Such models are well positioned to take advantage
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of emerging neuroinformatics approaches that can
potentially link such models with a wealth of empirical
data currently being compiled and organized into
large neuroscientific databases.3–5 In contrast, highly
abstracted models lack sufficient biological detail
to establish meaningful links to these databases,
whereas large systems-level models involving multiple
brain regions are generally too diverse in structure
and function for neuroinformatics approaches to be
productive. In the intermediated term over the next
several years, biophysically detailed models of single
neurons and local networks will likely provide the
most fruitful level of analysis for uncovering new
functional relationships, dynamical principles, and
information-processing strategies.

How do electrophysiological models fit into an
informatics approach to neuroscience? This question
is perhaps best answered in the context of a bottom-
up view of the problem. Starting at the molecular
level, sequence-based informatics approaches are
being used to reveal information about structural and
evolutionary relationships among ion channels and
receptor proteins. Molecular dynamics simulations
can help establish links from the structural level to
the functional properties of individual ion channel
and receptor complexes. Electrophysiological models
come into play at the next level of organization where
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information-processing properties emerge from the
dynamic interactions of multiple channel and receptor
types at the single-neuron level and interactions of
multiple neurons at the network level.

Neurons typically contain numerous types of ion
channels and membrane receptors. Different types of
neurons express different combinations of these pro-
teins, with varying densities and varying spatial dis-
tributions. There are, for example, dozens of different
types of voltage-gated K+ channels, but an individual
neuron may only express a few of these, and the
expression might be restricted to the soma or to partic-
ular regions of the dendrites.6,7 Different types of K+
channels vary in their electrophysiological properties,
such as activation and inactivation voltages, time con-
stants, and conductances. This heterogeneity suggests
that K+ channels may be differentially expressed and
distributed in order to shape the electrophysiological
response properties of individual neurons for carrying
out particular types of information-processing tasks.

The contributions of different ion channels to the
information-processing capabilities of the system can-
not be deduced from the properties of individual ion
channels alone. Rather, functional properties at the
single-neuron level must be evaluated in the presence
of an appropriate mix of channel types, densities, and
distributions and in the context of physiologically rel-
evant spatiotemporal patterns of input. For example,
certain types of K+ channels from the Kv3 gene family
are known to be activated only at rather depolarized
membrane potentials and tend to have fast activation
and inactivation time constants.8 Using biophysically
detailed compartmental models, neuroscientists have
been able to achieve a detailed understanding of how
Kv3 channel properties contribute to temporal signal
processing in the electric sense of weakly electric
fish9–11 and in the mammalian auditory system.12

If appropriate databases were available and suitable
neuroinformatics tools existed, one could imagine
undertaking a variety of interesting comparative
investigations regarding the functional role of Kv3
channels in other species, other sensory systems, and
other neural information-processing contexts.

BACKGROUND
This article assumes a general familiarity with the
neurophysiological and biophysical mechanisms
associated with electrical signaling in neurons. Good
introductory material in this area can be found in
numerous undergraduate textbooks (e.g., Refs 13
and 14). Recent advanced texts are available that
provide detailed, up-to-date coverage in areas such
as the cellular and molecular biology of nerve cells

(e.g., Ref 15) and the biophysical properties of ion
channels (e.g., Ref 16). A brief glossary is provided
here as a convenient reference for some of the key
terminology and functional concepts.

Glossary

action potential A transient electrical impulse
that propagates along an axon and serves as the
most common form of electrical signaling between
neurons. The duration is typically on the order of
a millisecond, and the amplitude is on the order
of 100 mV. Action potentials are also called nerve
impulses or spikes.

axon An output branch of a neuron that conducts
action potentials away from the site of initiation
and conveys electrical signals to other neurons
or effectors. The axon usually starts off as a
single long branch but may terminate in a complex
branched arbor that distributes outputs to large
numbers of target neurons.

compartmental model A single-neuron model that
divides the cell into multiple spatial compartments.
Each compartment can have different properties
(length, diameter, membrane voltage, ion channel
densities, etc.). The model produces a coupled
set of differential equations that are solved using
numerical integration techniques.

conductance A measure of the ease with which
electric current flows through a material; the
reciprocal of resistance; conductance units are
siemens; conductance (siemens) is a measure of
current (amperes) divided by voltage (volts).

dendrite An input branch of a neuron that typically
receives synaptic contacts from other neurons and
conveys graded electrical potentials to other parts
of the neuron.

equilibrium potential The membrane potential
at which the effects of the electrical potential
difference and the concentration gradient across
the membrane are balanced so as to produce
no net ion flux. Also called the Nernst poten-
tial. Calculated from the Nernst equation: Eion =
(RT/zF) ln([ion]out/[ion]in), where R is the univer-
sal gas constant, T the temperature in Kelvin, z
the ionic charge, F Faraday’s constant, and [ion]in
and [ion]out are ionic concentrations.
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gating The process by which ion channels open and
close so as to regulate the flow of ions. Voltage-
gated ion channels change their gating state
based on the local electrical potential difference
across the cell membrane. Ligand-gated channels
change their gating state based on the binding
of signaling molecules (neurotransmitters). Gating
usually involves a change in the conformation of
the channel protein.

Hodgkin–Huxley model A model of the ionic
basis of the action potential in squid giant axon
developed by Hodgkin and Huxley and published
in 1952. More generally, this term can refer to any
model that uses a Hodgkin–Huxley (HH)-type
mathematical formalism to describe macroscopic
ionic currents in nerve cells based on voltage-
dependent gating properties.

macroscopic conductance The electrical conduc-
tance arising from a population of single-channel
conductances; often quoted in terms of con-
ductance per unit area of membrane; typically
in the range of millisiemens (mS) per square
centimeter.

Markov model A formalism for modeling stochas-
tic processes which treats the behavior of a system
as a series of transitions between distinct states. In
the context of ion channels, these distinct states
represent different conformational states. Some
conformations will correspond to closed states,
some to open states, and some to inactivated
states.

membrane potential The voltage across the cell
membrane. If the potential outside of the cell
is used as a reference (0 mV), then a typical
membrane potential for a neuron at rest would
be about −70 mV. The choice of reference point,
however, is a matter of convention. In some cases,
the inside of the cell is used as a reference, in
which case the resting membrane potential would
be 0 mV and the external potential would be
+70 mV.

Monte Carlo method A numerical method for
simulating the behavior of a stochastic system
by using random numbers to generate possible
outcomes based on a model of the underlying
probability distribution.

single-channel conductance The electrical con-
ductance of a single-ion channel in the open state;
typically between 1 and 150 pS (picosiemens).

soma The cell body of the neuron; contains the
nucleus and much of the metabolic machinery of
the cell.

reversal potential The membrane potential at
which no net current flows through an open ion
channel or activated synapse. If the channel or
synapse is permeable to a single ionic species, then
the reversal potential is equal to the equilibrium
potential for that ion. Otherwise, the reversal
potential reflects a weighted sum of the equilib-
rium potentials for all permeant ionic species.

voltage clamp A technique for recording the ionic
currents across the cell membrane during con-
trolled changes in the membrane potential. Fast
feedback circuitry is used to maintain the mem-
brane potential at the desired ‘command’ level.

TECHNICAL DETAILS AND
METHODOLOGY

HH Models
The core mathematical framework for modern
biophysically based neural modeling was developed
half a century ago by Sir Alan Hodgkin and Sir
Andrew Huxley. They carried out an elegant series
of electrophysiological experiments on the squid giant
axon in the late 1940s and early 1950s. The squid
giant axon is notable for its extraordinarily large
diameter (∼0.5 mm). Most axons in the squid nervous
system and in other nervous systems are typically at
least 100 times thinner. The large size of the squid
giant axon is a specialization for rapid conduction of
action potentials that trigger the contraction of the
squid’s mantle when escaping from a predator. In
addition to being beneficial for the squid, the large
diameter of the giant axon was beneficial for Hodgkin
and Huxley because it permitted manipulations that
were not technically feasible in smaller axons that
had been used in biophysical studies up to that
point. In a well-designed series of experiments,
Hodgkin and Huxley systematically demonstrated
how the macroscopic ionic currents in the squid giant
axon could be understood in terms of changes in
Na+ and K+ conductances in the axon membrane.
Based on a series of voltage-clamp experiments,
they developed a detailed mathematical model of
the voltage-dependent and time-dependent properties
of the Na+ and K+ conductances. The empirical
work led to the development of a coupled set
of differential equations describing the ionic basis
of the action potential,17 which became known
as the HH model. The real predictive power of
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FIGURE 1 | Electrical equivalent circuit for a short
segment of squid giant axon. The capacitor represents
the capacitance of the cell membrane; the two variable
resistors represent voltage-dependent Na+ and K+

conductances, the fixed resistor represents a
voltage-independent leakage conductance, and the
three batteries represent reversal potentials for the
corresponding conductances. The pathway labeled ‘stim’
represents an externally applied current, such as might
be introduced via an intracellular electrode. The sign
conventions for the various currents are indicated by the
directions of the corresponding arrows. Note that the
arrow for the external stimulus current Iext is directed
from outside to inside (i.e., inward stimulus current is
positive), whereas arrows for the ionic currents INa, IK,
and IL are directed from inside to outside (i.e., outward
ionic currents are positive). (Adapted with permission
from Ref 17. Copyright 1952 John Wiley & Sons, Inc).

GNa GK GL

CM

ENa EK EL

vout

vin

INa IK ILIC Iext

Stim

the model became evident when Hodgkin and
Huxley demonstrated that numerical integration of
these differential equations (using a hand-cranked
mechanical calculator!) could accurately reproduce
all the key biophysical properties of the action
potential. For this outstanding achievement, Hodgkin
and Huxley were awarded the 1963 Nobel Prize in
Physiology and Medicine (shared with Sir John Eccles
for his work on the biophysical basis of synaptic
transmission).

Electrical Equivalent Circuits
In biophysically based neural modeling, the electrical
properties of a neuron are represented in terms
of an electrical equivalent circuit. Capacitors are
used to model the charge storage capacity of
the cell membrane, resistors are used to model
the various types of ion channels embedded in
membrane, and batteries are used to represent the
electrochemical potentials established by differing
intra- and extracellular ion concentrations. In their
seminal paper on the biophysical basis of the action
potential, Hodgkin and Huxley17 modeled a segment
of squid giant axon using an equivalent circuit
similar to that shown in Figure 1. In the equivalent
circuit, the current across the membrane has two
major components, one associated with the membrane
capacitance and the other one associated with the flow
of ions through resistive membrane channels. The
capacitive current Ic is defined by the rate of change
of charge q at the membrane surface: Ic = dq/dt. The
charge q(t) is related to the instantaneous membrane
voltage Vm(t) and membrane capacitance Cm by the
relationship q = CmVm. Thus, the capacitive current
can be rewritten as Ic = CmdVm/dt. In the HH model
of the squid axon, the ionic current Iion is subdivided

into three distinct components: a sodium current INa,
a potassium current IK, and a small leakage current IL
that is primarily carried by chloride ions. The behavior
of an electrical circuit of the type shown in Figure 1
can be described by a differential equation of the
general form:

Cm
dVm

dt
+ Iion = Iext (1)

where Iext is an externally applied current, such
as might be introduced through an intracellular
electrode. Equation (1) is the fundamental equation
relating the change in membrane potential to the
currents flowing across the membrane.

Macroscopic Ionic Currents
The individual ionic currents INa, IK, and IL shown
in Figure 1 represent the macroscopic currents
flowing through a large population of individual
ion channels. In HH-style models, the macroscopic
current is assumed to be related to the membrane
voltage through an Ohm’s law relationship of the
form V = IR. In many cases, it is more convenient
to express this relationship in terms of conductance
rather than resistance, in which case Ohm’s law
becomes I = GV, where the conductance G is the
inverse of resistance, G = 1/R. In applying this
relationship to ion channels, the equilibrium potential
Ek for each ion type also needs to be taken into
account. This is the potential at which the net ionic
current flowing across the membrane would be zero.
The equilibrium potentials are represented by the
batteries in Figure 1. The current is proportional to
the conductance times the difference between the
membrane potential Vm and the equilibrium potential
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Ek. The total ionic current Iion is the algebraic sum
of the individual contributions from all participating
channel types found in the cell membrane:

Iion =
∑

k

Ik =
∑

k

Gk(Vm − Ek) (2)

which expands to the following expression for the
HH model of the squid axon:

Iion = GNa(Vm − ENa) + GK(Vm − EK)

+ GL(Vm − EL) (3)

Note that individual ionic currents can be positive or
negative depending on whether the membrane voltage
is above or below the equilibrium potential. This
raises the question of sign conventions. Is a positive
ionic current flowing into or out of the cell? The most
commonly used sign convention in neural modeling
is that ionic current flowing out of the cell is positive
and ionic current flowing into the cell is negative (see
Section on ‘Sign Conventions’ for more details).

In general, the conductances are not constant
values, but can depend on other factors like
the membrane voltage or the intracellular calcium
concentration. In order to explain their experimental
data, Hodgkin and Huxley postulated that GNa
and GK were voltage-dependent quantities, whereas
the leakage current GL was taken to be constant.
Thus, the resistor symbols in Figure 1 are shown as
variable resistors for GNa and GK, and as a fixed
resistor for GL. Today, we know that the voltage-
dependence of GNa and GK can be related to the
biophysical properties of the individual ion channels
that contribute to the macroscopic conductances.
Although Hodgkin and Huxley did not know about
the properties of individual membrane channels when
they developed their model, it will be convenient for
us to describe the voltage-dependent aspects of their
model in those terms.

Gates
The macroscopic conductances of the HH model can
be considered to arise from the combined effects of a
large number of microscopic ion channels embedded
in the membrane. Each individual ion channel can be
thought of as containing one or more physical gates
that regulate the flow of ions through the channel. An
individual gate can be in one of two states, permissive
or nonpermissive. When all of the gates for a particular
channel are in the permissive state, ions can pass
through the channel and the channel is open. If any of
the gates are in the nonpermissive state, ions cannot
flow and the channel is closed. Although it might

seem more natural to speak of gates as being open
or closed, a great deal of confusion can be avoided
by consistently using the terminology permissive and
nonpermissive for gates while reserving the terms open
and closed for channels.

The voltage-dependence of ionic conductances
is incorporated into the HH model by assuming that
the probability for an individual gate to be in the
permissive or nonpermissive state depends on the
value of the membrane voltage. If we consider gates
of a particular type i, we can define a probability
pi, ranging between 0 and 1, which represents
the probability of an individual gate being in the
permissive state. If we consider a large number of
channels, rather than an individual channel, we can
also interpret pi as the fraction of gates in that
population that are in the permissive state. At some
point in time t, let pi(t) represent the fraction of gates
that are in the permissive state. Consequently, 1 − pi

(t) must be in the nonpermissive state.

fraction in
nonpermissive
state, 1 − pi (t)

αi(V)−−→
←−−
βi(V)

fraction in
permissive
state, pi (t)

The rate at which gates transition from the
nonpermissive state to the permissive state is denoted
by a variable αi(V), which has units of 1/s. Note
that this ‘rate constant’ is not really constant, but
depends on membrane voltage V. Similarly, there is a
second rate constant, βi(V), describing the transition
rate from the permissive to the nonpermissive state.
Transitions between permissive and nonpermissive
states in the HH model are assumed to obey first-order
kinetics:

dpi

dt
= αi(V)(1 − pi) − βi(V)pi (4)

where αi(V) and βi(V) are voltage-dependent. If the
membrane voltage Vm is clamped at some fixed value
V, then the fraction of gates in the permissive state will
eventually reach a steady-state value (i.e., dpi/dt = 0)
as t→∞ given by

pi,t→∞ = αi(V)
αi(V) + βi(V)

(5)

The time course for approaching this equilibrium
value is described by a simple exponential with time
constant τi(V) given by:

τi(V) = 1
αi(V) + βi(V)

(6)
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When an individual channel is open, it con-
tributes some small, fixed value to the total con-
ductance and zero otherwise. The macroscopic con-
ductance for a large population of channels is thus
proportional to the number of channels in the open
state, which is, in turn, proportional to the proba-
bility that the associated gates are in their permissive
state. Thus, the macroscopic conductance Gk due to
channels of type k, with constituent gates of type i,
is proportional to the product of the individual gate
probabilities pi:

Gk = ḡk

∏
i

pi (7)

where ḡk is a normalization constant that determines
the maximum possible conductance when all the
channels are open (i.e., all gates are in the permissive
state).

We have presented Eqs. (4)–(7) using a
generalized notation that can be applied to a wide
variety of conductances beyond those found in the
squid axon. To conform to the standard notation
of the HH model, the probability variable pi in Eqs.
(4)–(7) is replaced by a variable that represents the gate
type. For example, Hodgkin and Huxley modeled the
sodium conductance using three gates of a type labeled
‘m’ and one gate of type ‘h’. Applying Eq. (7) to the
sodium channel using both the generalized notation
and the standard notation yields:

GNa = ḡNap3
mph = ḡNam3h (8)

Similarly, the potassium conductance is modeled with
four identical ‘n’ gates:

GK = ḡKp4
n = ḡNan4 (9)

Summarizing the ionic currents in the HH model in
standard notation, we have

Iion = ḡNam3h(Vm − ENa) + ḡKn4(Vm − EK)

+ gL(Vm − EL) (10)

dm
dt

= αm(V)(1 − m) − βm(V)m (11)

dh
dt

= αh(V)(1 − h) − βh(V)h (12)

dn
dt

= αn(V)(1 − n) − βn(V)n (13)

To completely specify the model, the one task
that remains is to specify how the six rate constants
in Eqs. (11)–(13) depend on the membrane voltage.
Then Eqs. (10)–(13), together with Eq. (1), completely

specify the behavior of the membrane potential Vm in
the HH model of the squid giant axon.

Sign Conventions
Note that the appearance of Iion on the left-hand side
of Eq. (1) and Iext on the right indicates that they have
opposite sign conventions. As the equation is written,
a positive external current Iext will tend to depolarize
the cell (i.e., make Vm more positive) while a positive
ionic current Iion will tend to hyperpolarize the cell
(i.e., make Vm more negative). This sign convention
for ionic currents is sometimes referred to as the
neurophysiological or physiologists’ convention. This
convention is conveniently summarized by the phrase
‘inward negative’, meaning that an inward flow of
positive ions into the cell is considered a negative
current. This convention perhaps arose from the fact
that when one studies an ionic current in a voltage-
clamp experiment, rather than measuring the ionic
current directly, one actually measures the clamp
current that is necessary to counterbalance it. Thus,
an inward flow of positive ions is observed as a
negative-going clamp current, hence explaining the
‘inward negative’ convention. Some neural simulation
software packages, such as GENESIS, use the opposite
sign convention (inward positive), because that allows
all currents to be treated consistently. In the figures
shown in this article, membrane currents are plotted
using the neurophysiological convention (inward
negative).

Voltage Conventions
Although we are on the topic of conventions, there are
two more issues that should be discussed here. The
first concerns the value of the membrane potential
Vm. Recall that potentials are relative; only potential
differences can be measured directly. Thus, when
defining the intracellular potential Vm, one is free
to choose a convention that defines the resting
intracellular potential to be zero (the convention used
by Hodgkin and Huxley), or one could choose a
convention that defines the extracellular potential to
be zero, in which case the resting intracellular potential
would be around −70 mV. In either case, the potential
difference across the membrane is the same, it is simply
a matter of how ‘zero’ is defined. Most simulation
software packages allow the user to select a voltage
reference convention they like.

The second convention we need to discuss
concerns the sign of the membrane potential. The
modern convention is that depolarization makes the
membrane potential Vm more positive. However,
Hodgkin and Huxley17 used the opposite sign
convention (depolarization negative) in their article.
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In the figures in this article, we use the modern
convention that depolarization is positive.

At a conceptual level, the choice of conventions
for currents and voltages is inconsequential; however,
at the implementation level it matters a great deal,
because inconsistencies will cause the model to
behave incorrectly. The most important thing in
choosing conventions is to ensure that the choices are
internally consistent. One must pay careful attention
to these issues when implementing a simulation using
equations from a published model, because it may be
necessary to convert the empirical results reported
using one set of conventions into a form that is
consistent with one’s own model conventions.

Rate Constants
How did Hodgkin and Huxley go about determining
the voltage-dependence of the rate constants α and β

that appear in Eqs. (11)–(13)? How did they determine
that the potassium conductance should be modeled
with four n gates, but that the sodium conductance
required three m gates and one h gate? In order to
answer these questions, we need to look in more
detail at the type of data that can be obtained from
voltage-clamp experiments.

Figure 2 shows simulated voltage-clamp data,
similar to those obtained by Hodgkin and Huxley in
their studies of squid giant axon. In these experiments,
Hodgkin and Huxley used voltage-clamp circuitry to
step the membrane potential from the resting level
(0 mV) to a steady depolarized level. The figure
shows the time course of the change in normalized
K+ conductance for several different voltage steps.
Three qualitative effects are apparent in the data.
First, the steady-state conductance level increases
with increasing membrane depolarization. Second,
the onset of the conductance change becomes faster
with increasing depolarization. Third, there is a slight
temporal delay between the start of the voltage step
and the change in conductance.

In the simulated voltage-clamp experiments
illustrated in Figure 2, the membrane potential starts
in the resting state (Vm = 0, using the HH voltage
convention) and is then instantaneously stepped to a
new clamp voltage Vc. What is the time course of
the state variable n, which controls gating of the K+

channel, under these circumstances? Recall that the
differential equation governing the state variable n is
given by:

dn
dt

= αn(V)(1 − n) − βn(V)n (14)
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FIGURE 2 | Simulated voltage-clamp data illustrating
voltage-dependent properties of the K+ conductance in squid giant
axon. The command voltage Vc (mV) is shown in the lower panel, and
the K+ current is shown in the upper panel. Simulation parameters are
from the HH model.17

Initially, with Vm = 0, the state variable n has a steady-
state value (i.e., when dn/dt = 0) given by Eq. (5):

n∞(0) = αn(0)
αn(0) + βn(0)

(15)

When Vm is clamped to a new level Vc, the gating
variable n will eventually reach a new steady-state
value given by

n∞(Vc) = αn(Vc)
αn(Vc) + βn(Vc)

(16)

The solution to Eq. (14) that satisfies these boundary
conditions is a simple exponential of the form:

n(t) = n∞(Vc) − (n∞(Vc) − n0(0))e−t/τn(Vc) (17)

Given Eq. (17), which describes the time course of n
in response to a step change in command voltage, one
could try fitting curves of this form to the conductance
data shown in Figure 2 by finding the values of n∞(Vc),
n∞(0), and τn(Vc) that give the best fit to the data for
each value of Vc. Figure 3 illustrates this process,
using some simulated conductance data generated by
the HH model. Recall that n takes on values between
0 and 1, so in order to fit the conductance data,
n must be multiplied by a normalization constant
ḡK that has units of conductance. For simplicity,
the normalized conductance GK/ḡK is plotted. The
dotted line in Figure 3 shows the best-fit results for a
simple exponential curve of the form given in Eq. (17).
Although this simple form does a reasonable job of
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FIGURE 3 | Best-fit curves of the form Gk = ḡKnj (j = 1–4) for
simulated conductance versus time data. The inset shows an
enlargement of the first millisecond of the response. The initial
inflection in the curve cannot be well-fit by a simple exponential (dotted
line) which rises linearly from zero. Successively higher powers of j
(j = 2: dot–dashed; j = 3: dashed line) result in a better fit to the
initial inflection. In this case, j = 4 (solid line) gives the best fit.

capturing the general time course of the conductance
change, it fails to reproduce the sigmoidal shape
and the temporal delay in onset. This discrepancy
is most apparent near the onset of the conductance
change, shown in the inset of Figure 3. Hodgkin
and Huxley realized that a better fit could be
obtained if they considered the conductance to be
proportional to a higher power of n. Figure 3 shows
the results of fitting the conductance data using a
form GK = ḡknj with powers of j ranging from 1
to 4. Using this sort of fitting procedure, Hodgkin
and Huxley determined that a reasonable fit to the K+
conductance data could be obtained using an exponent
of j = 4. Thus, they arrived at a description for
the K+ conductance under voltage-clamp conditions
given by:

GK = ḡKn4 = ḡK [n∞(Vc) − (n∞(Vc)

−n∞(0))e−t/τn
]4

(18)

Activation and Inactivation Gates
The strategy that Hodgkin and Huxley used for
modeling the sodium conductance is similar to that
described above for the potassium conductance,
except that the sodium conductance shows a
more complex behavior. In response to a step
change in clamp voltage, the sodium conductance
exhibits a transient response (Figure 4), whereas the
potassium conductance exhibits a sustained response
(Figure 2). Sodium channels inactivate whereas the
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FIGURE 4 | Simulated voltage-clamp data illustrating activation and
inactivation properties of the Na+ conductance in squid giant axon. The
command voltage Vc is shown in the lower panel, and the Na+ current
is shown in the upper panel. Simulation parameters are from the HH
model.17

potassium channels do not. To model this process,
Hodgkin and Huxley postulated that the sodium
channels had two types of gates, an activation gate,
which they labeled m, and an inactivation gate,
which they labeled h. Again, boundary conditions
dictated that m and h must follow a time course
given by

m(t) = m∞(Vc) − (m∞(Vc) − m∞(0))e−t/τm(Vc) (19)

h(t) = h∞(Vc) − (h∞(Vc) − h∞(0))e−t/τh(Vc) (20)

Hodgkin and Huxley made some further simplifica-
tions by observing that the sodium conductance in the
resting state is small compared with the value obtained
during a large depolarization; hence, they were able
to neglect m∞(0) in their fitting procedure. Likewise,
steady-state inactivation is nearly complete for large
depolarizations, so h∞(Vc) could also be eliminated
from the fitting procedure. With these simplifications,
Hodgkin and Huxley were able to fit the remaining
parameters from the voltage-clamp data. The sodium
conductance GNa was thus modeled by an expression
of the form GNa = ḡNam3h.

Parameterizing the Rate Constants
By fitting voltage-clamp data as discussed above,
steady-state conductance values and time constants
can be empirically determined as a function of
command voltage for each of the gating variables
associated with a particular channel. Using Eqs. (5)
and (6), the steady-state conductance values and time
constants can be transformed into expressions for
the forward and backward rate constants α and β.
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For example, for the potassium channel n gate we
have

αn(V) = n∞(V)
τn(V)

(21)

βn(V) = 1 − n∞(V)
τn(V)

(22)

Thus, there are two equivalent representations for the
voltage-dependence of a channel. One representation
specifies the voltage-dependence of the rate constants,
which we will call the α/β representation. The other
representation specifies the voltage-dependence of
the steady-state conductance and the time constant,
which we will call the n∞/τ representation. These
two representations are interchangeable, and one
can easily convert between them using the algebraic
relationships in Eqs. (5) and (6) (for transforming from
α/β to n∞/τ ) and Eqs. (21) and (22) (for transforming
from n∞/τ to α/β). In general, experimentalists
tend to use the n∞/τ representation because it
maps more directly onto the results of voltage-
clamp experiments. Modelers, on the other hand,
tend to express voltage-dependences using the α/β

representation, because it maps more directly onto the
gating Eqs. (11)–(13) in the standard formulation of
the HH model.

Voltage-clamp experiments yield estimates of
n∞/τ or α/β only at the discrete clamp voltages
Vc used in the experiment. Numerical integration
of the HH model, however, requires that n∞/τ or
α/β values be specified over a continuous range of
membrane voltages, because the membrane potential

varies continuously in the model. Typically, voltage-
dependences are expressed as a continuous function
of voltage, and the task for the modeler becomes
one of determining the parameter values that best
fit the data. As an illustration, the closed circles in
Figure 5a and b represent empirical data on n∞(Vc)
and τn(Vc) obtained by Hodgkin and Huxley (Table
1 of Hodgkin and Huxley17). The data points in
Figure 5c and d show the same data set transformed
into the α/β representation. Hodgkin and Huxley
used the following functional forms to parameterize
their K+ conductance results (shown as solid lines in
Figure 5):

αn(V) = 0.01 (10 − V)
exp (10 − V/10) − 1

(23)

βn(V) = 0.125 exp
(−V

80

)
(24)

If Eqs. (23) and (24) above are compared with Eqs.
(12) and (13) from the original article,17 you will
note that the sign of the membrane voltage has been
changed to correspond to the modern convention (see
Section on ‘Voltage Conventions’ above). Hodgkin
and Huxley used similar functional forms to describe
the voltage-dependence of the m and h gates of the
sodium channel:

αm(V) = 0.1 (25 − V)
exp (25 − V/10) − 1

(25)

βm(V) = 4 exp
(−V

18

)
(26)
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FIGURE 5 | Parametric fits to
voltage-dependence of the K+ conductance in
the HH model. (A) Steady-state value n∞; (B)
time constant τn (C) forward rate constant αn;
and (D) backward rate constant βn. Data
points are from Table 1 of Hodgkin and
Huxley.17 Solid lines in panels (C) and (D) are
parametric fits to the rate data. The best-fit
curves correspond to Eqs. (23) and (24),
respectively. Solid lines in panels (A) and (B)
are the transformations of the α/β functions
into the n∞/τ representation using Eqs. (5)
and (6).
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αh(V) = 0.07 exp
(−V

20

)
(27)

βh(V) = 1
exp (30 − V/10) + 1

(28)

In neural simulation software packages, the rate
constants in HH-style models are often parameterized
using a generic functional form:

α(V) = A + BV
C + H exp (V + D/F)

(29)

In general, this functional form may require up to six
parameters (A, B, C, D, F, and H) to fully specify the
rate equation. However, in many cases, adequate fits
to the data can be obtained using far fewer parameters.
Fortunately, Eq. (29) is flexible enough that it can be
transformed into simpler functional forms by setting
certain parameters to either 0 or 1. For example,
if the voltage-clamp data can be adequately fit by
an exponential function over the relevant range of
voltages, then setting B = 0, C = 0, D = 0, and H = 1
in Eq. (29), results in a simple exponential form,
a(V) = A exp(−V/F), with just two free parameters
(A and F) to be fit to the data. Similarly, setting B = 0,
C = 1, and H = 1 gives a sigmoidal function with
three free parameters (A, D, and F).

One other technical note is that certain function
forms can become indeterminate at certain voltage
values. For example, the expression for αn(V) in
Eq. (23) evaluates to the indeterminate form 0/0
at V = 10. The solution to this problem is to
apply L’Hôpital’s rule, which states that if f (x) and
g(x) approach 0 as x approaches a, and f ′(x)/g′(x)
approaches L as x approaches a, then the ratio
f (x)/g(x) approaches L as well. Using this rule, it
can be shown that αn(10) = 0.1. When implementing
HH-style rate functions in computer code, care must
be taken to handle such cases appropriately.

Calcium-Dependent Channels
Certain types of ion channels are influenced by both
membrane voltage and intracellular calcium concen-
tration. Although calcium-dependence was not part of
the original HH model, it is straightforward to extend
the HH framework to handle this case. Calcium-
dependence is typically implemented by modifying
the α/β rate equations to include an additional state
variable representing the intracellular calcium con-
centration. For example, Traub18 proposed a model
of intrinsic bursting in hippocampal neurons that
included a slow calcium-dependent potassium con-
ductance Gs. This conductance was modeled using
an HH-style rate equation that depends on both

membrane voltage V and intracellular calcium con-
centration χ . Traub18 modeled the slow potassium
conductance as Gs = ḡsq, where q is a standard HH
gating variable with first-order kinetics:

dq
dt

= αq(1 − q) − βqq (30)

The voltage- and calcium-dependence were incorpo-
rated into the rate equations as follows:

αq(χ , V) = exp
(

V
27

)
0.005(200 − χ )

exp (200 − χ/20) − 1
(31)

βq = 0.002 (32)

Conductances that depend on both membrane
voltage and calcium concentration are rarely as
well characterized experimentally as are ordinary
voltage-dependent channels. In part this is due
to the technical challenges in trying to achieve a
‘calcium clamp’ to precisely quantify the calcium-
dependence. Furthermore, voltage-clamp experiments
on these conductances are more difficult to interpret
because even though the membrane voltage is
held fixed by the clamp circuitry, the intracellular
calcium concentration is varying during the clamp.
Consequently, modelers must often devise rate
equations for such channels based on more qualitative
criteria than are used for regular voltage-dependent
channels. To simplify this task, it is common to take
one of the α/β rate equations as a constant [as was
done for βq in Eq. (32) above] and to put all of
the voltage- and calcium-dependence into the other
rate equation. This reduces the number of unknown
parameters in the model, and it simplifies searching
the parameter space.

For understanding the effects on channel gating,
the region of space in which the calcium concentration
must be known is a thin shell just inside the membrane
surface. The calcium concentration in this region can
be significantly different from the bulk concentration
in the interior of the cell. Calcium enters this shell
region primarily through the influx of Ca2+ ions
through membrane calcium channels. Calcium leaves
the shell region because of diffusion and buffering.
A simple model of intracellular calcium dynamics
describes this process by a differential equation of the
form18:

dχ

dt
= AICa − Bχ (33)

where A is a constant related to the volume of the
shell and the conversion of coulombs to moles of
ions, while B is a rate constant representing the
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effects of diffusion and buffering. As a technical
note, recall that ionic currents are typically defined as
‘inward negative’ (see Section on ‘Sign Conventions’
above). Using this convention, the constant A in Eq.
(33) will be a negative number, such that inward
(negative) calcium current will cause a positive change
in calcium concentration χ . For a discussion of more
advanced techniques for modeling calcium dynamics,
see Ref 19.

Markov Models of Individual Channels
The HH framework has been extremely successful
for developing quantitative models of macroscopic
currents observed in single neurons. However, a dif-
ferent approach must be used if one is interested
in modeling the currents flowing through individual
channels. At the microscopic level, gating of individ-
ual ion channels is a stochastic process. Transitions
between permissive and nonpermissive gating states
take place by probabilistic transitions between differ-
ent conformational states of the ion channel complex.
Certain conformational states allow ions to move
through the channel, while others do not. When
monitored experimentally in single-channel patch-
clamp recordings, for example, individual channels
are observed to fluctuate randomly between open and
closed states.

Markov models provide a framework for
describing the microscopic currents through individ-
ual ion channels.20 The basic assumption underlying
the Markov model formalism is that the opening
and closing of ion channels can be described as a
series of transitions between distinct conformational
states. Certain states may correspond to the channel
being open, closed, inactivated, and so on. Tran-
sitions between different states occur according to
a set of transition probabilities. Figure 6 shows a
generic Markov model consisting of 5 states Si and 10
transition probabilities pij. Note that the number of
transition probabilities will depend on the topology
of the Markov model. For example, a fully connected
five-state model, in which any state could transition
to any other state, would have 20 transition proba-
bilities. Part of the task of designing a Markov model
involves determining how many states are involved,
which transitions are allowed, and which are forbid-
den. The forbidden transitions do not appear in the
diagram. The modeler’s task then becomes one of
determining values for the remaining allowed transi-
tion probabilities.

The probability to find the system in state Si

at some time t is defined as Pi(t). The transition
probability pij is the conditional probability of finding

S1 S2 S3

S5S4

p12 p23

p32

p35p53p24

p45

p54

p42

p21

FIGURE 6 | A representative Markov model diagram. This particular
model has five distinct states S1–S5 and 10 transition probabilities pij.
In Markov models of ion channels, each state represents a putative
conformational state of the ion channel complex. Some conformations
will correspond to closed states, some to open states, and some to
inactivated states.

the system in a new state j if it has recently been in
state i. The time evolution of Pi(t) can be written as:

dPi(t)
dt

=
n∑

j=1

Pj(t)pji −
n∑

j=1

Pi(t)pij (34)

The first term on the right-hand side of this equation
represents the increase in probability of finding the
system in state Si because of transitions entering this
state from other states. The second term represents the
decrease in probability because of transitions out of
state Si into other states. If there is a large population
of identical channels, then Pi(t) can be interpreted as
the fraction of channels in state Si and the transition
probabilities pij can be interpreted as rate constants.
Thus, Markov models provide a convenient formalism
for linking the gating properties of individual channels
to the behavior of macroscopic currents as described
by the HH model.

Figure 7a shows a five-state Markov model that
corresponds to the n4 gating kinetics of the HH K+
channel model. The Markov model has five distinct
states, n0–n4, where the subscript represents the
number of HH gates in the permissive state. When the
channel is in state n1, for example, one of the gates is in
the permissive configuration and three of the gates are
nonpermissive. Ions can flow through the channel only
when all gates are in the permissive state (state n4); all
other states correspond to closed states. The transition
probabilities between states can be calculated from the
forward (αn) and reverse (βn) rate constants of the HH
K+ channel model and the assumption that each gate
behaves independently. There are four possible ways
that the n0 state can transition to the n1 state, so
the corresponding transition rate is 4αn. The full set
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FIGURE 7 | A Markov model of the HH K+

conductance. (a) The Markov model has four closed
states n0 − n3 and one open state n4. The subscript
corresponds to the number of n gates in the
permissive state. (b) Command voltage in a simulated
voltage-clamp experiment. (c) Monte Carlo simulation
of state transitions of the Markov model in response
to a step change in command voltage. (d) Normalized
conductance of the K+ channel. The channel is open
(Gnorm

K = 1) whenever the system is in state n4,
otherwise the channel is closed (Gnorm

K = 0).
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of transition probabilities that correspond to the HH
model kinetics are shown in the figure.

The sequence of openings and closings of
an individual channel can be simulated using
Monte Carlo techniques to randomly generate state
transitions with the specified probabilities. Recall that
the HH rate constants are voltage-dependent, so a
change in membrane voltage (Figure 7b) will result in
a shift of all the transition probabilities and hence a
shift in the probability distribution of states. Figure 7c
shows a Monte Carlo simulation of the time history
of state transitions before and after a step change in
clamp voltage. When the membrane is clamped to the
resting voltage (VC = 0), the system spends most of
its time in states n0 − n2, which are all closed states.
When the membrane is clamped to a depolarized
voltage (VC = 60), the system spends most of its time
in states n2 − n4. The channel is open whenever the
model is in state n4, as reflected in the conductance
record shown in Figure 7d.

Figure 8a shows an eight-state Markov model
that corresponds to the m3h gating kinetics of the
HH Na+ channel. The model is in the open state
only when all gates are permissive (state m3h1). Any
state in which the inactivation gate is nonpermissive
(h0) corresponds to an inactivated state of the
channel. According to the HH model, the behavior
of the inactivation gate (h) is independent of the
three activation gates (m). This is reflected in the
Markov model by the fact that transitions to an
inactivated state can potentially occur from any
open or closed state. However, careful experimental
studies of Na+ channel gating kinetics have revealed

that activation and inactivation processes are not
completely independent. Figure 8b shows a more
recent Markov model of Na+ channel gating21 that
provides a better description of the data.

Synaptic Models
Thus far, the techniques in this article have
focused primarily on modeling voltage-dependent
channels. Equally important from a functional
perspective are the ligand-gated channels that mediate
chemical synaptic transmission. When an action
potential arrives at the presynaptic terminal of
a chemical synapse, neurotransmitter is released
into the synaptic cleft. Neurotransmitter molecules
subsequently bind to ligand-gated receptors in
the postsynaptic membrane, causing changes in
ionic current flow across the membrane. In an
equivalent electrical circuit model (Figure 1), ligand-
gated channels are represented by additional resistive
pathways across the membrane.

For simulating synaptic activation in neural
models, the details of synaptic release, diffusion, and
receptor binding are often abstracted into a simpler
form that describes the postsynaptic conductance as
a time-dependent function. The arrival of an action
potential at a synapse at time tspike gives rise to a
transient change in a postsynaptic conductance that is
often modeled using the alpha function22:

Gsyn(t) = gpeake
τsyn

(t − tspike)e
−(t−tspike)/τsyn for t ≥ tspike

(35)
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(a) HH Na channel
Inactivated states

Closed states Open

(b) Na channel (Patlak21)
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FIGURE 8 | Two different Markov models of the Na+ conductance.
(a) The Markov model corresponding to independent activation and
inactivation gating of the HH model has eight distinct states. The
subscripts on the states represent the number of gates of each type in
the permissive state. The channel is open only when all three m gates
and the h gate are in the permissive state (m3h1). (b) A model proposed
by Patlak21 which includes interactions between the activation and
inactivation gates. This model provides a better description of actual
voltage-clamp data from squid axon than does the HH model.

The peak of the conductance change occurs at time
t = tspike + τsyn, and the conductance value at this
time is gpeak. The synaptic current Isyn associated with
the synapse is modeled by Isyn(t) = Gsyn(t)(V − Esyn),
where Esyn is the reversal potential of the synapse.

When a synapse is activated by a sequence
of action potentials, the net change in conductance
is often modeled as a linear summation of the
contributions from each individual action potential.
A straightforward implementation based on Eq. (35)
would require keeping a time history of spike
activity and summating over all previous spike
times. However, this approach is computationally
inefficient and rarely used in large-scale simulations.
There are more efficient methods involving either
the reformulation of the conductance change as a

second-order differential equation23 or reorganization
of the computation to require the storage of only two
running sums per synapse, rather than a complete time
history of activation.24

Another technique for modeling synaptic con-
ductances utilizes a Markov model approach.25 The
simplest form of such models involves only a single
open state and a single closed state. Such two-state
models can be represented by:

C + T
α−→

←−
β

O (36)

where C is a closed state, O an open state, T represents
neurotransmitter, and α and β are forward and
backward rate constants, respectively. Unlike the
Hodgkin and Huxley model, the rate constants, α

and β, are independent of membrane voltage. Let the
fraction of receptors in the open state be represented
by r, and let the neurotransmitter concentration be
denoted by [T]. Then the first-order kinetic equation
for this system is

dr
dt

= α[T](1 − r) − βr (37)

One simple way to model the neurotransmitter
concentration is to assume that a constant amplitude
pulse of transmitter is released when the action
potential arrives at the presynaptic terminal, in which
case Eq. (37) can be solved analytically for r(t).26 The
synaptic current is then modeled by:

Isyn(t) = ḡsynr(t)(V − Esyn) (38)

In general, Markov models of this type can be
much more sophisticated than the two-state model
presented above. These more detailed models can have
multiple states representing various open, closed, and
desensitized configurations. Such biophysically rich
Markov models may be particularly useful when
using a neuroinformatics approach to investigate
how receptor properties are altered by variations in
the molecular structure and subunit composition of
particular ligand-gated receptors.

Metabotropic Receptors
Up to this point, we have been discussing ionotropic
receptors for which neurotransmitter binding causes
direct and immediate gating of an associated ion
channel. Metabotropic receptors, on the other
hand, exert their influence indirectly by acting
through an intracellular second messenger system.
For metabotropic receptors, neurotransmitter binding
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leads to the activation of intracellular biochemical
pathways, which may ultimately link to the opening
or closing of second messenger gated ion channels. The
cascade of reactions that take place in such systems can
be modeled using a combination of Markov models for
the components that have discrete states and standard
biochemical reaction kinetics for describing chemical
concentrations that vary continuously.26 For example,
the binding of transmitter T to a metabotropic
receptor R, leading to the formation of an activated
receptor state R∗, might be described by a two-state
Markov model:

R + T −−→
←−− R∗ (39)

Following receptor activation, there could be several
intermediate biochemical reactions of the general
form:

A + B

α−−→
←−−

β

X + Y (40)

which can be modeled using standard reaction
kinetics.27 In Eq. (40), α and β are forward
and backward rate constants for the reaction. The
chemical concentrations are governed by a rate
equation of the form:

d[A]
dt

= −α[A][B] + β[X][Y] (41)

and a set of relationships that reflect the stoichiometry
of the reaction

d[A]
dt

= d[B]
dt

= −d[X]
dt

= −d[Y]
dt

(42)

In a second messenger cascade, one of the reactants
appearing on the left-hand side of one of the
biochemical reactions would be the activated receptor
R∗, and one of the products appearing on the right-
hand side would be a second messenger Z that could
serve as a ligand for a postsynaptic ion channel. The
gating of this second messenger gated channel could
then be described by a Markov model, such as the
following two-state model,

C + Z −−→
←−− O (43)

or by a more complex multi-state model. For example,
Destexhe et al.26 found that a four-state Markov
model was needed to adequately fit both the rising

and decaying phases of a G-protein-activated GABAB
receptor current.

Multicompartment Models
A simple electrical equivalent circuit, such as that
shown in Figure 1, can be used to model a localized
region of nerve cell membrane. In general, however,
neurons have spatially extended axons and dendrites
with heterogeneous properties. Different regions of
the cell will have different diameters and varying types
and densities of ion channels and receptors. Further-
more, quantities such as the local membrane potential
and the local intracellular calcium concentration can
vary significantly across the spatial extent of a neuron.
Multicompartment models provide a means for han-
dling the spatial complexity of neuron morphology
and the heterogeneity of physical properties. Figure 9
illustrates the compartmental modeling approach for

(a) dendrite

(b) compartmentalization

(c) equivalent circuit

i i + 1i - 1

vout vout vout

vivi -1 vi+1

FIGURE 9 | Compartmental approach for single-neuron modeling.
The dendrites (a) are divided into distinct regions that are represented
by cylindrical compartments (b). Each compartment can have different
physical characteristics (membrane potential, length, diameter, channel
types, channel densities, etc.). The physical properties are modeled by
an electrical equivalent circuit (c). In the circuit model, neighboring
compartments are coupled by resistors representing the axial resistance
of the intracellular space. Branch points are handled in a similar manner
(data not shown).
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a segment of dendritic membrane. The multicom-
partment modeling approach divides the neuron into
a number of smaller spatial compartments, each of
which can be modeled with an electrical equivalent
circuit similar to Figure 1. The components of the
equivalent circuit and their numerical values can vary
from compartment to compartment, depending on
the particular types of conductances found in differ-
ent regions of the cell. Neighboring compartments
are coupled by axial currents that flow between com-
partments in the intracellular space. The membrane
potential for compartment i, Vi, is related to the mem-
brane potentials in neighboring compartments, Vi−1
and Vi+1, by

Cm
dVi

dt
+ Iion = (Vi−1 − Vi)

ri−1,i
+ (Vi+1 − Vi)

ri+1,i
(44)

where Cm and Iion are based on the equivalent circuit
for compartment i. The terms ri±1,i represent the
axial resistances between neighboring compartments,
and the terms (Vi±1,i − Vi)/ri±1,i represent the axial
currents. Similar relationships exist for branch points
where an axonal or dendritic segment splits into
two or more subsegments. Using these techniques,
multicompartment models can describe arbitrarily
complex cell morphologies. Detailed advice on how to
construct, parameterize, and test multicompartment
models can be found in Refs 28, 29 and 37.

Network Models
Previous sections have covered techniques for mod-
eling single neurons, ion channels, and individual
synapses. Using these techniques, it is relatively
straightforward to create network models, in which
the spike outputs from certain model neurons pro-
vide synaptic inputs to other neurons in the network.
There are two main issues to consider in constructing
network-level models. One involves choosing an
appropriate mathematical representation for the prop-
agation of action potentials between neurons. The
other issue has to do with techniques for specifying
the synaptic connectivity within the network.

In principle, the propagation action potentials
between neurons could be handled using HH con-
ductances and a multicompartmental description of
the axon and its terminal arbor. This approach is
sometimes used when the scientific questions being
addressed pertain explicitly to mechanisms of action
potential propagation.30 However, it is computation-
ally expensive to use a full multicompartment model to
describe every axon and terminal arbor in a large net-
work. Because of the all-or-none nature of the action
potential, it is often possible to use a more efficient

technique in which action potentials are represented as
discrete temporal events. In this event-based approach,
an action potential generated by neuron i at time ti

is represented as a time-stamped event that is used
to trigger synaptic input to a target neuron j after
some time delay �tij. Propagation along the axon
is not modeled explicitly; rather it is implicit in the
axonal propagation delay �tij. Recall that a single
axon typically makes synaptic contacts with multiple
target neurons. In general, the propagation delay �tij

can have different numerical values for each of the
possible postsynaptic targets.

The second issue in network modeling involves
specification of the connectivity between neurons. For
small network models, this is often handled on a case-
by-case basis, whereas large network models usually
require a rule-based approach. For example, a model
of an invertebrate central pattern generator might
involve 10 neurons with an average of five synapses
per neuron, resulting in approximately 50 synaptic
connections. Specification of the synaptic properties
(receptor type, reversal potential, peak conductance,
propagation delay, etc.) could easily be handled on
a synapse-by-synapse basis. In contrast, a network
model of a local region of mammalian visual cortex
might involve on the order of 10,000 neurons with an
average of 100 synapses per neuron, resulting in one
million synaptic connections. In this case, a synapse-
by-synapse specification would be unfeasible and a
rule-based approach would be utilized. For example, a
connection rule might specify that all neurons of type
A (e.g., inhibitory interneurons) make a particular
type of synaptic connection (e.g., GABAergic) with all
neurons of type B (e.g., pyramidal cells) that lie within
a fixed radius. The rule might also specify how the
peak conductance and axonal propagation delay vary
with target distance.

Software Tools
Fortunately, sophisticated software packages are
available to facilitate the development, implemen-
tation, and dissemination of biophysically detailed
neural models. Two of the most widely used tools are
GENESIS (GEneral NEural SImulation System)32,33

and NEURON.34 Both of these modeling environ-
ments are designed for constructing biophysically
detailed multicompartment models of single neurons,
and they also provide modeling tools that span from
the molecular level to the network level. Both GEN-
ESIS and NEURON provide high-level languages for
model specification, predefined sets of neural build-
ing blocks, and graphical user interface elements for
simulation control and visualization. To construct a
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specific neural model, the model specification language
is used to define and link appropriate sets of predefined
building blocks to create a functional model. The basic
building blocks include such things as compartments
or cable segments for modeling neuron morphology,
voltage-gated and ligand-gated conductances, compo-
nents for intracellular diffusion and buffering of ions,
chemical and electrical synapses, and various forms
of synaptic plasticity. Other building blocks provide
the model with external inputs and outputs, includ-
ing file I/O and graphical displays. Some building
blocks provide models of electrophysiological instru-
mentation like stimulus generators and voltage-clamp
circuits, which allow users to closely model the exper-
imental setups that are used in empirical studies.
Custom user-defined elements can be created if the
required modeling component is not already part of
the predefined set of building blocks. More infor-
mation on these modeling environments, including
documentation, tutorials, users groups, and work-
shop announcements, can be found on the Web by
following the links provided in the Web Resources
section.

CURRENT APPLICATIONS
Hundreds of biophysically detailed neural models
have been developed using GENESIS, NEURON, and
similar modeling tools. The scientific issues addressed
in these models span a broad range of topics, including
intracellular signaling, dendritic processing, neural
oscillations, central pattern generation, motor control,
sensory coding, feature extraction, learning, and
memory. See the ‘Web Resources’ section for links to
research publications that have been generated using
GENESIS and NEURON. An illustrative example
of this type of biophysically detailed modeling
approach is provided by the cerebellar Purkinje cell
model developed by De Schutter and Bower31,35

using GENESIS. The dendritic morphology shown
in Figure 10 contains approximately 1600 distinct
compartments with lengths and diameters based
on detailed anatomical reconstructions of an actual
Purkinje cell.36 The model includes 10 different types
of voltage-dependent channels: two Na+ channels
(fast and persistent), two Ca2+ channels (T-type
and P-type), three voltage-dependent K+ channels,
and two Ca2+-dependent K+ channels. The channel
properties were modeled using HH equations, and the
modeling parameters were constrained by empirical
voltage-clamp data where available. The channels
were distributed differentially over three zones of the
Purkinje cell. Synaptic inputs were modeled using
a dual exponential version of the alpha function

[Eq. (35)] that allows for different time constants
for the rising and falling phases of the synaptic
waveform.23 Figure 10 shows the response of the
model to a large synchronous synaptic activation over
a large portion of the dendritic tree. This pattern of
synaptic input represents activation of the Purkinje
cell by a climbing fiber input. The so-called ‘complex
spike’ response of a Purkinje cell to climbing fiber
stimulation has been well studied experimentally. The
ability of the model to reproduce known membrane
voltage and intracellular calcium characteristics of
a complex spike was one of the benchmarks for
tuning certain model parameters and for evaluating
the underlying modeling assumptions. The simulation
results summarized in Figure 10 represent only one
of several studies carried out using the Purkinje cell
model.31,35 After tuning the model to reproduce a
range of in vitro firing behaviors, the model was used
to make predictions about the in vivo firing patterns
of Purkinje cells. The model has been particularly
useful in elucidating the role of dendritic inhibition in
shaping neural response properties.

LIMITATIONS
There are several limitations to keep in mind when
developing biophysically detailed neural models.
Perhaps one of the most important is that such
models are actually highly impoverished relative to
the true richness and complexity of the underlying
biology. Even though these models are described
as ‘biophysically detailed’, many aspects of cell and
membrane physiology have been stripped away in the
modeling process. The art of creating a good model
involves knowing which details are important and
which details can be safely disregarded. However,
details that are unimportant in one functional context
may become pivotal in a different context. Thus, one
should avoid thinking of any particular model, such
as the Purkinje cell model described above, as a full
and complete description of the underlying biological
system.

It is better to think of a neural model as
an extended hypothesis that is designed to address
a restricted range of neurobiological function. As
an extended hypothesis, each model embodies a
large number of assumptions. Certain assumptions
will be well supported by empirical data, while
others will be largely speculative. For the purpose
of hypothesis testing, it is important to keep track of
all the underlying assumptions and the corresponding
empirical constraints on those assumptions. This is
one area where neuroinformatics tools can play a key
role in helping modelers establish and document links

Volume 3, January/February 2011  2010 John Wiley & Sons, Inc. 89



Focus Article www.wiley.com/wires/sysbio

(a) (b) (c)

(d) (e) (f)

Volt
+40

+20

0

−20

−40

−60

[Ca2+]
16

8

5

3

2

1

0A B C

20 mV

5 ms

FIGURE 10 | Representations of the membrane potential and calcium concentration in a large compartmental model of a cerebellar Purkinje cell
following synaptic activation. (a–c) Membrane potential 1.4, 4.0, and 10.0 ms after synaptic activation. (D and E) Intracellular Ca2+ concentration 1.4
and 4.0 ms after activation. (f) Membrane potential (red trace) and Ca2+ concentration (green trace) in the cell body following activation. The vertical
white bars indicate the times at which the false color images in panels (a)–(e) were generated. (Adapted with permission from Ref 31. Copyright 1994
John Wiley & Sons, Inc.).

between each assumption and the set of empirical
results that impact that particular assumption. In
terms of hypothesis testing, an important limitation to
keep in mind is that even if a neural model successfully
reproduces certain empirical results, it does not imply
that all the underlying assumptions in the model are
true. Likewise, if a model fails to agree with some
piece of empirical data, the fact that the ‘extended
hypothesis’ is falsified does not directly indicate which
of the underlying assumptions might be responsible
for the disagreement. Therefore, it is not particularly
useful to simply label a neural model as ‘right’ or
‘wrong’. Instead, neural modeling should be viewed
as an integral component of the scientific method, in
which progress is made through multiple iterations
of experimental observation, hypothesis generation
(model building), prediction (model simulation), and
testing (comparison with empirical data).

OUTLOOK

Based on research trends over the past decade, it is
clear that both neuroinformatics and electrophysio-
logical modeling are becoming increasingly important
tools for exploring the functional properties of neu-
ral systems. Several ongoing research and develop-
ment efforts are leading toward a convergence and
integration of neuroinformatics and modeling tools
that will greatly enhance the ability of neurosci-
entists to make use of these powerful approaches.
Much of this development effort is taking place in
the context of the Human Brain Project.3–5 Several
research groups are actively developing large electro-
physiological databases, common data representations
to facilitate information sharing, software tools for
electrophysiological data analysis and visualization,
neuroinformatics tools for search and retrieval, and
neuroinformatics-based extensions to neural modeling
software packages.
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WEB RESOURCES
CATACOMB: a simulation system for biologically based network models (http://www.compneuro.org/catacomb/)

GENESIS: a general-purpose simulation system for single neuron and network models (http://www.genesis-sim.org/
GENESIS/). For a list of research publication using the GENESIS simulator, see http://www.genesis-sim.org/GENESIS/
pubs.html

NEURON simulator: a general-purpose simulation system for single neuron and network models (http://www.neuron.yale.
edu/). For a list of research publication using the NEURON simulator, see http://www.neuron.yale.edu/neuron/bib/usednrn.
html

NeuroML: a prototype markup language for describing neuroscience simulation models (http://www.neuroml.org/)

SenseLab: prototype databases of cell properties, membrane properties, and neural models (http://senselab.med.yale.edu/
senselab/)
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