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Electrophysiological Models

17.1 INTRODUCTION

Understanding the electrophysiological basis of neural coding,
communication, and information processing is central to modern
neuroscience research. Mathematical modeling and computer
simulation have become an integral part of the neuroscientist’s
toolbox for exploring these phenomena at a variety of levels of
organization, from the biophysical basis of current flow through
individual ion channels, to the modeling of aspects of cognitive
function arising from the distributed activity of large populations
of neurons. Neural models can be constructed at many levels of
abstraction. Some types of scientific questions can be addressed
using highly reduced models that treat neurons as simple thresh-
old devices, while other questions require detailed models of
membrane biophysics and intracellular signaling networks.

This chapter will focus on the tools and techniques for con-
structing biophysically detailed compartmental models of indi-
vidual neurons and local networks (Koch and Segev, 1998; De
Schutter 2001). Such models are well positioned to take ad-
vantage of emerging neuroinformatics approaches that can po-
tentially link such models with a wealth of empirical data cur-
rently being compiled and organized into large neuroscientific
databases (Huerta et al., 1993; Koslow and Huerta, 1997; Shep-
herd et al., 1998). In contrast, highly abstracted models lack
sufficient biological detail to establish meaningful links to these
databases, while large systems-level models involving multiple
brain regions are generally too diverse in structure and function
for neuroinformatics approaches to be productive. In the inter-
mediated term over the next several years, biophysically detailed
models of single neurons and local networks will likely provide
the most fruitful level of analysis for uncovering new functional
relationships, dynamical principles, and information processing
strategies.

How do electrophysiological models fit into an informat-
ics approach to neuroscience? This question is perhaps best
answered in the context of a bottom-up view of the problem.
Starting at the molecular level, sequence-based informatics ap-
proaches are being used to reveal information about structural
and evolutionary relationships among ion channels and recep-
tor proteins. Molecular dynamics simulations can help establish
links from the structural level to the functional properties of
individual ion channel and receptor complexes. Electrophysio-
logical models come into play at the next level of organization
where information-processing properties emerge from the dy-
namic interactions of multiple channel and receptor types at the
single-neuron level and interactions of multiple neurons at the
network level.

Neurons typically contain numerous types of ion channels
and membrane receptors. Different types of neurons express dif-
ferent combinations of these proteins, with varying densities and
varying spatial distributions. There are, for example, dozens of
different types of voltage-gated K+ channels, but an individ-
ual neuron may only express a few of these, and the expression
might be restricted to the soma or to particular regions of the
dendrites (Rudy, 1988; Coetzee et al., 1999). Difterent types of
K™ channels vary in their electrophysiological properties, such
as activation and inactivation voltages, time constants, and con-
ductances. This heterogeneity suggests that Kt channels may
be differentially expressed and distributed in order to shape the
electrophysiological response properties of individual neurons
for carrying out particular types of information processing tasks.
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The contributions of different ion channels to the information
processing capabilities of the system cannot be deduced from the
properties of individual ion channels alone. Rather, functional
properties at the single-neuron level must be evaluated in the
presence of an appropriate mix of channel types, densities, and
distributions and in the context of physiologically relevant spa-
tiotemporal patterns of input. For example, certain types of K+
channels from the Kv3 gene family are known to be activated
only at rather depolarized membrane potentials and tend to have
fastactivation and inactivation time constants (Rudy etal., 1999).
Using biophysically detailed compartmental models, neurosci-
entists have been able to achieve a detailed understanding of
how Kv3 channel properties contribute to temporal signal pro-
cessing in the electric sense of weakly electric fish (Rashid et al.,
2001a,b, Doiron et al., 2001) and in the mammalian auditory sys-
tem (Wang et al., 1998). If appropriate databases were available
and suitable neuroinformatics tools existed, one could imagine
undertaking a variety of interesting comparative investigations
regarding the functional role of Kv3 channels in other species,
other sensory systems, and other neural information processing
contexts.

17.2 BACKGROUND

This chapter assumes a general familiarity with the neurophysi-
ological and biophysical mechanisms associated with electrical
signaling in neurons. Good introductory material in this area can
be found in numerous undergraduate textbooks (e.g., Delcomyn,
1998; Shepherd, 1994). Recent advanced texts are available that
provide detailed, up-to-date coverage in areas such as the cel-
lular and molecular biology of nerve cells (e.g., Levitan and
Kaczmarek, 2002) and the biophysical properties of ion chan-
nels (e.g., Hille, 2001). A brief glossary is provided here as a
convenient reference for some of the key terminology and func-
tional concepts.

17.2.1 Glossary

Action Potential: a transient electrical impulse that propagates
along an axon and serves as the most common form of electrical
signaling between neurons. The duration is typically on the order
of a millisecond, and the amplitude is on the order of 100 mV.
Action potentials are also called nerve impulses or spikes.
Axon: an output branch of a neuron that conducts action po-
tentials away from the site of initiation and conveys electrical
signals to other neurons or effectors. The axon usually starts off
as a single long branch but may terminate in a complex branched
arbor that distributes outputs to large numbers of target neurons.
Compartmental Model: a single neuron model that divides the
cell into multiple spatial compartments. Each compartment can
have different properties (length, diameter, membrane voltage,
ion channel densities, etc.). The model produces a coupled set of
differential equations that are solved using numerical integration
techniques.

Conductance: a measure of the ease with which electric current
flows through a material; the reciprocal of resistance; conduc-
tance units are siemens; conductance (siemens) is a measure of
current (amperes) divided by voltage (volts).
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Dendrite: an input branch of a neuron that typically receives
synaptic contacts from other neurons and conveys graded elec-
trical potentials to other parts of the neuron.

Equilibrium Potential: For an individual type of ion, the mem-
brane potential at which the effects of the electrical potential
difference and the concentration gradient across the membrane
are balanced so as to produce no net ion flux. Also called the
Nernst potential. Calculated from the Nernst equation: Ej,, =
(RT/zF)In([ion]ey/[ion]iy), where R is the universal gas con-
stant, 7 is the temperature in degrees Kelvin, z is the ionic charge,
F is Faraday’s constant, and [ion];, and [ion],, are ionic con-
centrations.

Gating: the process by which ion channels open and close so as
to regulate the flow of ions. Voltage-gated ion channels change
their gating state based on the local electrical potential difference
across the cell membrane. Ligand-gated channels change their
gating state based on the binding of signaling molecules (neu-
rotransmitters). Gating usually involves a change in the confor-
mation of the channel protein.

Hodgkin-Huxley Model: originally, a specific model of the ionic
basis of the action potential in squid giant axon developed by
Hodgkin and Huxley and published in 1952. More generally,
any model that uses a Hodgkin—Huxley-type formalism to de-
scribe macroscopic ionic currents in nerve cells based on voltage-
dependent gating properties.

Macroscopic Conductance: the electrical conductance arising
from a population of single channel conductances; often quoted
in terms of conductance per unit area of membrane; typically in
the range of millisiemens (mS) per square centimeters.

Markov Model: a formalism for modeling stochastic processes
that treats the behavior of a system as a series of transitions
between distinct states. In the context of ion channels, these
distinct states represent different conformational states. Some
conformations will correspond to closed states, some to open
states, and some to inactivated states.

Membrane Potential: The electrical potential in the intracellular
space. If the potential outside of the cell is used as a reference
(0 mV), then a typical membrane potential for a neuron at rest
would be on the order of —70 mV. The choice of reference point,
however, is a matter of convention. In some cases the inside of the
cell is used as a reference, in which case the resting membrane
potential would be 0 mV and the external potential would be
+70 mV.

Monte Carlo Method: a numerical method for simulating the
behavior of a stochastic system by using random numbers to
generate possible outcomes based on a model of the underlying
probability distribution.

Single-Channel Conductance: the electrical conductance of a
single ion channel in the open state; typically between 1 and
150 pS (picosiemens).

Soma: the cell body of the neuron; contains the nucleus and
much of the metabolic machinery of the cell.

Reversal Potential: the membrane potential at which no net cur-
rent flows through an open ion channel or activated synapse. If
the channel or synapse is permeable to a single ionic species,
then the reversal potential is equal to the equilibrium poten-
tial for that ion. Otherwise, the reversal potential reflects a
weighted sum of the equilibrium potentials for all permeant ionic
species.
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Voltage-Clamp: a technique for recording the ionic currents
across the cell membrane during controlled changes in the mem-
brane potential. Fast feedback circuitry is used to maintain the
membrane potential at the desired “command” level.

17.3 TECHNICAL DETAILS AND
METHODOLOGY

17.3.1 Hodgkin-Huxley Models

The core mathematical framework for modern biophysically
based neural modeling was developed half a century ago by
Sir Alan Hodgkin and Sir Andrew Huxley. They carried out an
elegant series of electrophysiological experiments on the squid
giant axon in the late 1940s and early 1950s. The squid giant
axon is notable for its extraordinarily large diameter (~0.5 mm).
Most axons in the squid nervous system and in other nervous
systems are typically at least 100 times thinner. The large size of
the squid giant axon is a specialization for rapid conduction of
action potentials that trigger the contraction of the squid’s mantle
when escaping from a predator. In addition to being beneficial
for the squid, the large diameter of the giant axon was beneficial
for Hodgkin and Huxley because it permitted manipulations that
were not technically feasible in smaller axons that had been used
in biophysical studies up to that point. In a well-designed series of
experiments, Hodgkin and Huxley systematically demonstrated
how the macroscopic ionic currents in the squid giant axon could
be understood in terms of changes in Nat and K conductances
in the axon membrane. Based on a series of voltage-clamp ex-
periments, they developed a detailed mathematical model of the
voltage-dependent and time-dependent properties of the Na™ and
K* conductances. The empirical work led to the development of
a coupled set of differential equations describing the ionic basis
of the action potential (Hodgkin and Huxley, 1952), which be-
came known as the Hodgkin—Huxley (HH) model. The real pre-
dictive power of the model became evident when Hodgkin and
Huxley demonstrated that numerical integration of these differ-
ential equations (using a hand-cranked mechanical calculator!)
could accurately reproduce all the key biophysical properties of
the action potential. For this outstanding achievement, Hodgkin
and Huxley were awarded the 1963 Nobel Prize in Physiology
and Medicine (shared with Sir John Eccles for his work on the
biophysical basis of synaptic transmission).

Electrical Equivalent Circuits

In biophysically based neural modeling, the electrical proper-
ties of a neuron are represented in terms of an electrical equiv-
alent circuit. Capacitors are used to model the charge storage
capacity of the cell membrane, resistors are used to model the
various types of ion channels embedded in membrane, and bat-
teries are used to represent the electrochemical potentials estab-
lished by differing intra- and extracellular ion concentrations.
In their seminal paper on the biophysical basis of the action
potential, Hodgkin and Huxley (1952) modeled a segment of
squid giant axon using an equivalent circuit similar to that shown
in Figure 17.1. In the equivalent circuit, the current across the
membrane has two major components, one associated with the
membrane capacitance and one associated with the flow of ions
through resistive membrane channels. The capacitive current /.

287

11:21



P1: IML/FFX
WY041-17

P2: IML/FFX
WYO041-Koslow-v3

QC: IML/FFX T1: IML

October 12, 2004 11:21

288 Electrophysiological Models

o]

lIK lh‘ T%m

Gy G, stim

Oout

Figure 17.1 Electrical equivalent circuit for a short segment of squid giant axon. The capacitor
represents the capacitance of the cell membrane; the two variable resistors represent
voltage-dependent Na™ and K* conductances, the fixed resistor represents a voltage-independent
leakage conductance, and the three batteries represent reversal potentials for the corresponding
conductances. The pathway labeled “stim” represents an externally applied current, such as might be
introduced via an intracellular electrode. The sign conventions for the various currents are indicated
by the directions of the corresponding arrows. Note that the arrow for the external stimulus current lox;
is directed from outside to inside (i.e., inward stimulus current is positive), whereas arrows for the
ionic currents Ina, Ik, and I, are directed from inside to outside (i.e., outward ionic currents are

positive). After Hodgkin and Huxley (1952).

is defined by the rate of change of charge g at the membrane
surface: I, = dg/dt. The charge g(t) is related to the instanta-
neous membrane voltage V,,(¢) and membrane capacitance C,,
by the relationship ¢ = C,,V,,. Thus the capacitive current can
be rewritten as I. = C,, dV,,/dt. In the Hodgkin—Huxley model
of the squid axon, the ionic current /;,, is subdivided into three
distinct components: a sodium current /y,, a potassium current
Ik, and a small leakage current /; that is primarily carried by
chloride ions. The behavior of an electrical circuit of the type
shown in Figure 17.1 can be described by a differential equation
of the general form

dv,

Cm? + Lion = Lexts (17.1)
where I, is an externally applied current, such as might be
introduced through an intracellular electrode. Equation (17.1)
is the fundamental equation relating the change in membrane
potential to the currents flowing across the membrane.

Macroscopic lonic Currents

The individual ionic currents I, Ik, and I; shown in Figure 17.1
represent the macroscopic currents flowing through a large popu-
lation of individual ion channels. In HH-style models, the macro-
scopic current is assumed to be related to the membrane volt-
age through an Ohm’s law relationship of the form V = IR. In
many cases it is more convenient to express this relationship
in terms of conductance rather than resistance, in which case
Ohm’s law becomes I = GV, where the conductance G is the

inverse of resistance, G = 1/R. In applying this relationship to
ion channels, the equilibrium potential E; for each ion type also
needs to be taken into account. This is the potential at which the
net ionic current flowing across the membrane would be zero.
The equilibrium potentials are represented by the batteries in
Figure 17.1. The current is proportional to the conductance times
the difference between the membrane potential V,, and the equi-
librium potential E. The total ionic current [, is the algebraic
sum of the individual contributions from all participating channel
types found in the cell membrane:

Ln=Y_Ii =Y Gi(V, — Ep), (17.2)
k k

which expands to the following expression for the Hodgkin—
Huxley model of the squid axon:

Iion = GNa(Vm - ENa) + GK(Vm - EK) + GL(Vm - EL)
(17.3)

Note that individual ionic currents can be positive or negative
depending on whether or not the membrane voltage is above or
below the equilibrium potential. This raises the question of sign
conventions. Is a positive ionic current flowing into or out of
the cell? The most commonly used sign convention in neural
modeling is that ionic current flowing out of the cell is positive
and ionic current flowing into the cell is negative (see subsection
entitled “Sign Conventions” for more details).

In general, the conductances are not constant values, but
can depend on other factors like the membrane voltage or the
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intracellular calcium concentration. In order to explain their
experimental data, Hodgkin and Huxley postulated that Gy, and
G were voltage-dependent quantities, whereas the leakage cur-
rent G, was taken to be constant. Thus the resistor symbols
in Figure 17.1 are shown as variable resistors for Gy, and Gk,
and as a fixed resistor for G, . Today, we know that the voltage-
dependence of Gy, and Gk can be related to the biophysical
properties of the individual ion channels that contribute to the
macroscopic conductances. Although Hodgkin and Huxley did
not know about the properties of individual membrane channels
when they developed their model, it will be convenient for us to
describe the voltage-dependent aspects of their model in those
terms.

Gates

The macroscopic conductances of the HH model can be con-
sidered to arise from the combined effects of a large number of
microscopic ion channels embedded in the membrane. Each in-
dividual ion channel can be thought of as containing one or more
physical gates that regulate the flow of ions through the channel.
An individual gate can be in one of two states, permissive or
nonpermissive. When all of the gates for a particular channel are
in the permissive state, ions can pass through the channel and the
channel is open. If any of the gates are in the nonpermissive state,
ions cannot flow and the channel is closed. Although it might
seem more natural to speak of gates as being open or closed,
a great deal of confusion can be avoided by consistently using
the terminology permissive and nonpermissive for gates while
reserving the terms open and closed for channels.

The voltage-dependence of ionic conductances is incorpo-
rated into the HH model by assuming that the probability for an
individual gate to be in the permissive or nonpermissive state de-
pends on the value of the membrane voltage. If we consider gates
of a particular type i, we can define a probability p;, ranging be-
tween 0 and 1, which represents the probability of an individual
gate being in the permissive state. If we consider a large number
of channels, rather than an individual channel, we can also inter-
pret p; as the fraction of gates in that population that are in the
permissive state. At some point in time 7, let p;(f) represent the
fraction of gates that are in the permissive state. Consequently,
1—p; (t) must be in the nonpermissive state.

fraction in (V) fraction in
nonpermissive permissive
state, 1 — p; (t) Bi(V) state, p; (1)

The rate at which gates transition from the nonpermissive
state to the permissive state is denoted by a variable «; (V'), which
has units of s~'. Note that this “rate constant” is not really con-
stant, but depends on membrane voltage V. Similarly, there is a
second rate constant, 8;(V'), describing the transition rate from
the permissive to the nonpermissive state. Transitions between
permissive and nonpermissive states in the HH model are as-
sumed to obey first-order kinetics:

dp;
dt

=a; (V) = p) = Bi(V)pi, (17.4)
where «;(V) and B;(V) are voltage-dependent. If the membrane
voltage V,, is clamped at some fixed value V, then the fraction of
gates in the permissive state will eventually reach a steady-state
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value (i.e., dp; /dt = 0) as t — o0 given by
a; (V)

a;(V)+Bi(V)

The time course for approaching this equilibrium value is de-

scribed by a simple exponential with time constant 7;(V') given
by

(17.5)

Dit—soco =

1
a(V)+ Bi(V)

When an individual channel is open, it contributes some
small, fixed value to the total conductance and zero otherwise.
The macroscopic conductance for a large population of channels
is thus proportional to the number of channels in the open state,
which is, in turn, proportional to the probability that the asso-
ciated gates are in their permissive state. Thus the macroscopic
conductance G due to channels of type k, with constituent gates
of type i, is proportional to the product of the individual gate

probabilities p;:
G =& 1_[ Di

where g, is a normalization constant that determines the maxi-
mum possible conductance when all the channels are open (i.e.,
all gates are in the permissive state).

We have presented Eqs. (17.4)—(17.7) using a generalized
notation that can be applied to a wide variety of conductances
beyond those found in the squid axon. To conform to the standard
notation of the HH model, the probability variable p; in Egs.
(17.4)—(17.7) is replaced by a variable that represents the gate
type. For example, Hodgkin and Huxley modeled the sodium
conductance using three gates of a type labeled “m” and one
gate of type “h”. Applying Eq. (17.7) to the sodium channel
using both the generalized notation and the standard notation
yields

(V) = (17.6)

(17.7)

Gra = gNaDyy P = Exa . (17.8)

Similarly, the potassium conductance is modeled with four iden-

[Tt}

tical “n” gates:

Gk = gk Py = &nan’. (17.9)

Summarizing the ionic currents in the HH model in standard
notation, we have

Lion = gna’h(V,y — Exy) + gxn*(V,y — Ex) + g1(Vy — EL),

(17.10)
dm
I = o, (V)(1 —m) — B (V)m, (17.11)
dh
o =, (V)1 —h) — By(V)h, (17.12)
dn
— =a,(V)(1 —n) = B,(V)n. (17.13)

dt

To completely specify the model, the one task that remains
is to specify how the six rate constants in Eqs. (17.11)—(17.13)
depend on the membrane voltage. Then Eqgs. (17.10)—(17.13),
together with Eq. (17.1), completely specify the behavior of the
membrane potential V,, in the HH model of the squid giant axon.
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Sign Conventions

Note that the appearance of I,,, on the left-hand side of Eq. (17.1)
and /., on the right indicates that they have opposite sign con-
ventions. As the equation is written, a positive external current
L. will tend to depolarize the cell (i.e., make V,, more posi-
tive) while a positive ionic current /;,, will tend to hyperpolarize
the cell (i.e., make V,, more negative). This sign convention for
ionic currents is sometimes referred to as the neurophysiologi-
cal or physiologists’ convention. This convention is conveniently
summarized by the phrase “inward negative,” meaning that an
inward flow of positive ions into the cell is considered a negative
current. This convention perhaps arose from the fact that when
one studies an ionic current in a voltage-clamp experiment, rather
than measuring the ionic current directly, one actually measures
the clamp current that is necessary to counterbalance it. Thus
an inward flow of positive ions is observed as a negative-going
clamp current, hence explaining the “inward negative” conven-
tion. Some neural simulation software packages, such as GEN-
ESIS, use the opposite sign convention (inward positive), since
that allows all currents to be treated consistently. In the figures
shown in this chapter, membrane currents are plotted using the
neurophysiological convention (inward negative).

Voltage Conventions

While we’re on the topic of conventions, there are two more
issues that should be discussed here. The first concerns the value
of the membrane potential V,,. Recall that potentials are relative;
only potential differences can be measured directly. Thus when
defining the intracellular potential V,,, one is free to choose a
convention that defines the resting intracellular potential to be
zero (the convention used by Hodgkin and Huxley), or one could
choose a convention that defines the extracellular potential to be
zero, in which case the resting intracellular potential would be
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around —70 mV. In either case the potential difference across
the membrane is the same, it’s simply a matter of how “zero”
is defined. Most simulation software packages allow the user to
select a voltage reference convention they like.

The second convention we need to discuss concerns the sign
of the membrane potential. The modern convention is that de-
polarization makes the membrane potential V,, more positive.
However, Hodgkin and Huxley (1952) used the opposite sign
convention (depolarization negative) in their article. In the fig-
ures in this chapter, we use the modern convention that depolar-
ization is positive.

At a conceptual level, the choice of conventions for currents
and voltages is inconsequential; however, at the implementation
level it matters a great deal, since inconsistencies will cause
the model to behave incorrectly. The most important thing in
choosing conventions is to ensure that the choices are internally
consistent. One must pay careful attention to these issues when
implementing a simulation using equations from a published
model, since it may be necessary to convert the empirical results
reported using one set of conventions into a form thatis consistent
with one’s own model conventions.

Rate Constants
How did Hodgkin and Huxley go about determining the voltage-
dependence of the rate constants o and f that appear in Egs.
(17.11)—(17.13)? How did they determine that the potassium
conductance should be modeled with four n gates, but that the
sodium conductance required three m gates and one h gate?
In order to answer these questions, we need to look in more
detail at the type of data that can be obtained from voltage-clamp
experiments.

Figure 17.2 shows simulated voltage-clamp data, similar to
those obtained by Hodgkin and Huxley in their studies of squid

1r ;
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_100f
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2 0 2
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Figure 17.2  Simulated voltage-clamp data illustrating voltage-dependent properties of the
K™ conductance in squid giant axon. The command voltage V, (mV) is shown in the lower
panel, and the K* current is shown in the upper panel. Simulation parameters are from the

Hodgkin and Huxley model (1952).
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giant axon. In these experiments, Hodgkin and Huxley used
voltage-clamp circuitry to step the membrane potential from the
resting level (0 mV) to a steady depolarized level. The figure
shows the time course of the change in normalized K* con-
ductance for several different voltage steps. Three qualitative
effects are apparent in the data. First, the steady-state conduc-
tance level increases with increasing membrane depolarization.
Second, the onset of the conductance change becomes faster
with increasing depolarization. Third, there is a slight temporal
delay between the start of the voltage step and the change in
conductance.

In the simulated voltage-clamp experiments illustrated in
Figure 17.2, the membrane potential starts in the resting state
(V,, = 0, using the HH voltage convention) and is then instan-
taneously stepped to a new clamp voltage V.. What is the time
course of the state variable n, which controls gating of the K™
channel, under these circumstances? Recall that the differential
equation governing the state variable # is given by

dn

i o, (V) —n) = B,(V)n.
Initially, with V,, = 0, the state variable n has a steady-state value
(i.e., when dn/dt = 0) given by Eq. (17.5):

,(0)

@, (0) + $,(0)°
When V,, is clamped to a new level V., the gating variable n will
eventually reach a new steady-state value given by

o (Vo)
@y (Ve) + Ba(Ve)

(17.14)

ne(0) = (17.15)

neo(Ve) = (17.16)

1.0

0.8

0.6

0.4

GK (normalized)

0.2
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The solution to Eq. (17.14) that satisfies these boundary condi-
tions is a simple exponential of the form

(1) = noo(Ve) = (oo (Ve) — ng(0))e /™), 7.17)
Given Eq. (17.17), which describes the time course of n in re-
sponse to a step change in command voltage, one could try
fitting curves of this form to the conductance data shown in
Figure 17.2 by finding values of n,(V.), n5(0), and 7,(V,) that
give the best fit to the data for each value of V.. Figure 17.3
illustrates this process, using some simulated conductance data
generated by the Hodgkin—Huxley model. Recall that n takes
on values between O and 1, so in order to fit the conductance
data, n must be multiplied by a normalization constant gx that
has units of conductance. For simplicity, the normalized conduc-
tance G /g is plotted. The dotted line in Figure 17.3 shows the
best-fit results for a simple exponential curve of the form given
in Eq. (17.17). While this simple form does a reasonable job of
capturing the general time course of the conductance change, it
fails to reproduce the sigmoidal shape and the temporal delay in
onset. This discrepancy is most apparent near the onset of the
conductance change, shown in the inset of Figure 17.3. Hodgkin
and Huxley realized that a better fit could be obtained if they
considered the conductance to be proportional to a higher power
of n. Figure 17.3 shows the results of fitting the conductance
data using a form Gy = gn’/with powers of j ranging from
1 to 4. Using this sort of fitting procedure, Hodgkin and Huxley
determined that a reasonable fit to the K* conductance data
could be obtained using an exponent of j = 4. Thus they arrived
at a description for the K* conductance under voltage-clamp

0.0 ¢

0 2 4

6 8 10

t (msec)

Figure 17.3  Best-fit curves of the form Gy = gg n’ (j = 1-4) for simulated conductance versus
time data. The inset shows an enlargement of the first millisecond of the response. The initial inflection
in the curve cannot be well-fit by a simple exponential (dotted line) which rises linearly from zero.
Successively higher powers of j (j = 2: dot—dashed; j = 3: dashed line) result in a better fit to the
initial inflection. In this case, j = 4 (solid line) gives the best fit.
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conditions given by

G = gxn* = gk [120(Ve) = (1o(Ve) = oo (0))e /]
(17.18)

Activation and Inactivation Gates

The strategy that Hodgkin and Huxley used for modeling the
sodium conductance is similar to that described above for the
potassium conductance, except that the sodium conductance
shows a more complex behavior. In response to a step change
in clamp voltage, the sodium conductance exhibits a transient
response (Figure 17.4), whereas the potassium conductance ex-
hibits a sustained response (Figure 17.2). Sodium channels in-
activate whereas the potassium channels do not. To model this
process, Hodgkin and Huxley postulated that the sodium chan-
nels had two types of gates, an activation gate, which they labeled
m, and an inactivation gate, which they labeled /. Again, bound-
ary conditions dictated that m and # must follow a time course
given by

m(t) = Moo (Ve) = (Moo(Ve) = mog(0))e /7Y, (17.19)

h(t) = hoo(V.) — (heo (V) — hoo(0))e ™"/ %), (17.20)
Hodgkin and Huxley made some further simplifications by ob-
serving that the sodium conductance in the resting state is small
compared to the value obtained during a large depolarization
hence they were able to neglect m1.,(0) in their fitting procedure.
Likewise, steady-state inactivation is nearly complete for large
depolarizations, so /1. (V,) could also be eliminated from the fit-
ting procedure. With these simplifications, Hodgkin and Huxley
were able to fit the remaining parameters from the voltage-clamp
data. The sodium conductance Gy, was thus modeled by an ex-
pression of the form Gy, = gnam’h.

0.3f
0.2
0.1F

0
0.1 |

GNa (normalized)
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Parameterizing the Rate Constants

By fitting voltage-clamp data as discussed above, steady-state
conductance values and time constants can be empirically deter-
mined as a function of command voltage for each of the gating
variables associated with a particular channel. Using Egs. (17.5)
and (17.6), the steady-state conductance values and time con-
stants can be transformed into expressions for the forward and
backward rate constants « and 8. For example, for the potassium
channel n gate we have

neo(V)

a,(V) = R (17.21)
T =ny(V)
B.(V) = ) (17.22)

Thus there are two equivalent representations for the voltage-
dependence of a channel. One representation specifies the
voltage-dependence of the rate constants, which we’ll call
the «/B representation. The other representation specifies the
voltage-dependence of the steady state conductance and the time
constant, which we’ll call the ny,/t representation. These two
representations are interchangeable, and one can easily convert
between them using the algebraic relationships in Egs. (17.5) and
(17.6) (for transforming from «/8 to ny/7) and Egs. (17.21)
and (17.22) (for transforming from n.,/7 to o/f). In general,
experimentalists tend to use the n. /7t representation because
it maps more directly onto the results of voltage-clamp exper-
iments. Modelers, on the other hand, tend to express voltage-
dependences using the «/ 8 representation, because it maps more
directly onto the gating equations Eqs. (17.11)—(17.13) in the
standard formulation of the Hodgkin—Huxley model.
Voltage-clamp experiments yield estimates of n,/t or o/
only at the discrete clamp voltages V. used in the experi-
ment. Numerical integration of the HH model, however, re-
quires that n.,/t or o/ values be specified over a continuous
range of membrane voltages, since the membrane potential varies

150

1001

(mV)

time (msec)

Figure 17.4  Simulated voltage-clamp data illustrating activation and inactivation
properties of the Na™ conductance in squid giant axon. The command voltage V, is
shown in the lower panel, and the Na™ current is shown in the upper panel. Simulation
parameters are from the Hodgkin and Huxley model (1952).
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Figure 17.5 Parametric fits to voltage-dependence of the K™ conductance in the HH
model. (A) Steady-state value n.; (B) time constant 7, (C) forward rate constant «,,; and
(D) backward rate constant f,. Data points are from Table 1 of Hodgkin and Huxley (1952).
Solid lines in panels C and D are parametric fits to the rate data. The best-fit curves
correspond to Egs. (17.23) and (17.24), respectively. Solid lines in panels A and B are the
transformations of the «/$ functions into the n, /7 representation using Eqs. (17.5) and

(17.6).

continuously in the model. Typically, voltage-dependences are
expressed as a continuous function of voltage, and the task for
the modeler becomes one of determining the parameter values
that best fit the data. As an illustration, the closed circles in
Figure 17.5A,B represent empirical data on n4(V,) and 7,(V.)
obtained by Hodgkin and Huxley (Table 1, Hodgkin and Huxley,
1952). The data points in Figure 17.5C,D show the same data set
transformed into the o/ B representation. Hodgkin and Huxley
used the following functional forms to parameterize their K™
conductance results (shown as solid lines in Figure 17.5):

V)= 0.01(10—-V) (17.23)
T T e () |
B.(V) = 0.125 exp(—V /80). (17.24)

IfEqgs. (17.23) and (17.24) above are compared with Eqs. (17.12)
and (17.13) from the original article (Hodgkin and Huxley,
1952), you will note that the sign of the membrane voltage
has been changed to correspond to the modern convention (see
subsection entitled “Voltage Conventions” above). Hodgkin and
Huxley used similar functional forms to describe the voltage-
dependence of the m and & gates of the sodium channel:

vy= H1&B-V) (17.25)
T e () — 1 '
Bn(V) = dexp(—V/18), (17.26)
a,(V) = 0.07 exp(—V/20), (17.27)
Br(V) = (17.28)

exp (3L)+ 17

Inneural simulation software packages, the rate constants in HH-
style models are often parameterized using a generic functional
form:

A+ BV

Vim—on— ———
V)= e (22)

(17.29)

In general, this functional form may require up to six parameters
(A, B, C, D, F, H) to fully specify the rate equation. However, in
many cases adequate fits to the data can be obtained using far
fewer parameters. Fortunately, Eq. (17.29) is flexible enough
that it can be transformed into simpler functional forms by
setting certain parameters to either 0 or 1. For example, if the
voltage-clamp data can be adequately fit by an exponential
function over the relevant range of voltages, then setting
B=0,C=0,D=0,and H =1 in Eq. (17.29), results in a
simple exponential form, a(V) = A exp(—V/F), with just two
free parameters (A and F) to be fit to the data. Similarly, setting
B =0,C =1and H = 1 gives a sigmoidal function with three
free parameters (A, D, and F).

One other technical note is that certain function forms can
become indeterminate at certain voltage values. For example,
the expression for «,,(V) in Eq. (17.23) evaluates to the inde-
terminate form 0/0 at V = 10. The solution to this problem is
to apply L’Hopital’s rule, which states that if f(x) and g(x) ap-
proach 0 as x approaches a, and f’'(x)/g’(x) approaches L as
x approaches a, then the ratio f(x)/g(x) approaches L as well.
Using this rule, it can be shown that «,(10) = 0.1. When imple-
menting HH-style rate functions in computer code, care must be
taken to handle such cases appropriately.
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Calcium-Dependent Channels

Certain types of ion channels are influenced by both mem-
brane voltage and intracellular calcium concentration. Although
calcium-dependence was not part of the original HH model, it is
straightforward to extend the HH framework to handle this case.
Calcium-dependence is typically implemented by modifying the
a/B rate equations to include an additional state variable rep-
resenting the intracellular calcium concentration. For example,
Traub (1982) proposed a model of intrinsic bursting in hippocam-
pal neurons that included a slow calcium-dependent potassium
conductance G,. This conductance was modeled using an HH-
style rate equation that depends on both membrane voltage V
and intracellular calcium concentration x. Traub (1982) mod-
eled the slow potassium conductance as G; = g,q, where g is a
standard HH gating variable with first-order kinetics:

dq

Z =0lq(1 _Q)_ﬁqq~

The voltage- and calcium-dependence were incorporated into
the rate equations as follows:

(17.30)

0.005(200 — x)

oxp (1) 1

a,(x, V) = exp(V/27) (17.31)

B, = 0.002. (17.32)

Conductances that depend on both membrane voltage and cal-
cium concentration are rarely as well characterized experimen-
tally as are ordinary voltage-dependent channels. In part this
is due to the technical challenges in trying to achieve a “cal-
cium clamp” to precisely quantify the calcium-dependence. Fur-
thermore, voltage-clamp experiments on these conductances are
more difficult to interpret because even though the membrane
voltage is held fixed by the clamp circuitry, the intracellular cal-
cium concentration is varying during the clamp. Consequently,
modelers must often devise rate equations for such channels
based on more qualitative criteria than are used for regular
voltage-dependent channels. To simplify this task, it is com-
mon to take one of the «/f rate equations as a constant [as was
done for B, in Eq. (17.32) above] and to put all of the voltage-
and calcium-dependence into the other rate equation. This re-
duces the number of unknown parameters in the model, and it
simplifies searching the parameter space.

For understanding the effects on channel gating, the region
of space in which the calcium concentration must be known is a
thin shell just inside the membrane surface. The calcium concen-
tration in this region can be significantly different from the bulk
concentration in the interior of the cell. Calcium enters this shell
region primarily through the influx of Ca?>* ions through mem-
brane calcium channels. Calcium leaves the shell region due to
diffusion and buffering. A simple model of intracellular calcium
dynamics describes this process by a differential equation of the
form (Traub, 1982)

dd_)l‘( = Alc, — B X
where A is a constant related to the volume of the shell and
the conversion of coulombs to moles of ions, while B is a rate
constant representing the effects of diffusion and buffering. As a
technical note, recall that ionic currents are typically defined as
“inward negative” (see subsection entitled “Sign Conventions”
above). Using this convention, the constant A in Eq. (17.33)

(17.33)

October 12, 2004

will be a negative number, such that inward (negative) calcium
current will cause a positive change in calcium concentration
x . For a discussion of more advanced techniques for modeling
calcium dynamics, see Yamada et al. (1998).

17.3.2 Markov Models of Individual Channels

The HH framework has been extremely successful for devel-
oping quantitative models of macroscopic currents observed in
single neurons. However, a different approach must be used if
one is interested in modeling the currents flowing through indi-
vidual channels. At the microscopic level, gating of individual
ion channels is a stochastic process. Transitions between permis-
sive and nonpermissive gating states take place by probabilistic
transitions between different conformational states of the ion
channel complex. Certain conformational states allow ions to
move through the channel, while others do not. When monitored
experimentally in single-channel patch-clamp recordings, for ex-
ample, individual channels are observed to fluctuate randomly
between open and closed states.

Markov models provide a framework for describing the mi-
croscopic currents through individual ion channels (Destexhe
and Huguenard, 2001). The basic assumption underlying the
Markov model formalism is that the opening and closing of ion
channels can be described as a series of transitions between dis-
tinct conformational states. Certain states may correspond to the
channel being open, closed, inactivated, and so on. Transitions
between different states occur according to a set of transition
probabilities. Figure 17.6 shows a generic Markov model con-
sisting of 5 states S; and 10 transition probabilities p;;. Note
that the number of transition probabilities will depend on the
topology of the Markov model. For example, a fully connected
5-state model, in which any state could transition to any other
state, would have 20 transition probabilities. Part of the task
of designing a Markov model involves determining how many
states are involved, which transitions are allowed, and which are
forbidden. The forbidden transitions don’t appear in the diagram.
The modeler’s task then becomes one of determining values for
the remaining allowed transition probabilities.

The probability to find the system in state S; at some time ¢ is
defined as P;(). The transition probability p;; is the conditional
probability of finding the system in a new state j if it has recently
been in state i. The time evolution of P;(¢) can be written as

dPl' n n
w_ > Pi0psi — Y Pt)pij.
Jj=1 j=1

17.34
’r ( )

The first term on the right-hand side of this equation represents
the increase in probability of finding the system in state S; due to
transitions entering this state from other states. The second term
represents the decrease in probability due to transitions out of
state S; into other states. If there is a large population of identical
channels, then P;(r) can be interpreted as the fraction of channels
in state S; and the transition probabilities p;; can be interpreted
as rate constants. Thus Markov models provide a convenient
formalism for linking the gating properties of individual channels
to the behavior of macroscopic currents as described by the HH
model.

Figure 17.7A shows a five-state Markov model that corre-
sponds to the n* gating kinetics of the HH K* channel model.
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Figure 17.6 A representative Markov model diagram. This particular model has five
distinct states S| — S5 and 10 transition probabilities p;;. In Markov models of ion
channels, each state represents a putative conformational state of the ion channel
complex. Some conformations will correspond to closed states, some to open states, and

some to inactivated states.

The Markov model has five distinct states, ny —n4, where the sub-
script represents the number of HH gates in the permissive state.
When the channel is in state n;, for example, one of the gates is
in the permissive configuration and three of the gates are nonper-
missive. lons can flow through the channel only when all gates
are in the permissive state (state n4); all other states correspond
to closed states. The transition probabilities between states can
be calculated from the forward («,) and reverse (8,) rate con-
stants of the HH K™ channel model and the assumption that each

gate behaves independently. There are four possible ways that
the n state can transition to the n; state, so the corresponding
transition rate is 4,  The full set of transition probabilities that
correspond to the HH model kinetics are shown in the figure.
The sequence of openings and closings of an individual chan-
nel can be simulated using Monte Carlo techniques to randomly
generate state transitions with the specified probabilities. Recall
that the HH rate constants are voltage-dependent, so a change
in membrane voltage (Figure 17.7B) will result in a shift of all

A closed states open

] state

4an 30cn 20cn o
= [l o (] 52 [l 51
B, 2, B, ®,

3 =ro=u=a=

o~

1+

norm

o 0

U1 1

100 50

0 50 100
time (msec)

Figure 17.7 A Markov model of the HH K™ conductance. (A) The Markov model has four
closed states ng — n3 and one open state n4. The subscript corresponds to the number of n gates
in the permissive state. (B) Command voltage in a simulated voltage-clamp experiment. (C)
Monte Carlo simulation of state transitions of the Markov model in response to a step change
in command voltage. (D) Normalized conductance of the K* channel. The channel is open
(GE™ = 1)whenever the system is in state n4, otherwise the channel is closed (G™ = 0).
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Figure 17.8 Two different Markov models of the Na™
conductance. (A) The Markov model corresponding to independent
activation and inactivation gating of the HH model has eight distinct
states. The subscripts on the states represent the number of gates of
each type in the permissive state. The channel is open only when all
three m gates and the / gate are in the permissive state (m3h). (B) A
model proposed by Patlak (1991) which includes interactions between
the activation and inactivation gates. This model provides a better
description of actual voltage-clamp data from squid axon than does the
HH model.

the transition probabilities and hence a shift in the probability
distribution of states. Figure 17.7C shows a Monte Carlo simu-
lation of the time history of state transitions before and after a
step change in clamp voltage. When the membrane is clamped to
the resting voltage (V¢ = 0), the system spends most of its time
in states ny — n,, which are all closed states. When the mem-
brane is clamped to a depolarized voltage (Ve = 60), the system
spends most of its time in states n, — ny. The channel is open
whenever the model is in state ny, as reflected in the conductance
record shown in Fig. 17.7D.

Figure 17.8A shows an 8-state Markov model that corre-
sponds to the m>h gating kinetics of the HH Na* channel. The
model is in the open state only when all gates are permissive (state
ms3hy). Any state in which the inactivation gate is nonpermissive
(ho) corresponds to an inactivated state of the channel. Accord-
ing to the HH model, the behavior of the inactivation gate (%) is
independent of the three activation gates (m). This is reflected
in the Markov model by the fact that transitions to an inacti-
vated state can potentially occur from any open or closed state.
However, careful experimental studies of Na* channel gating
kinetics have revealed that activation and inactivation processes

are not completely independent. Figure 17.8B shows a more re-
cent Markov model of Nat channel gating (Patlak, 1991) that
provides a better description of the data.

17.3.3 Synaptic Models

Thus far the techniques in this chapter have focused primarily on
modeling voltage-dependent channels. Equally important from
a functional perspective are the ligand-gated channels that me-
diate chemical synaptic transmission. When an action potential
arrives at the presynaptic terminal of a chemical synapse, neuro-
transmitter is released into the synaptic cleft. Neurotransmitter
molecules subsequently bind to ligand-gated receptors in the
postsynaptic membrane, causing changes in ionic current flow
across the membrane. In an equivalent electrical circuit model
(Figure 17.1), ligand-gated channels are represented by addi-
tional resistive pathways across the membrane.

For simulating synaptic activation in neural models, the de-
tails of synaptic release, diffusion, and receptor binding are often
abstracted into a simpler form that describes the postsynaptic
conductance as a time-dependent function. The arrival of an ac-
tion potential at a synapse at time Zy. gives rise to a transient
change in a postsynaptic conductance that is often modeled using
the alpha function (Rall, 1967):

Gsyn(l) = gpeake/rsyn(t - lspike)e_(z_,sljike)/rsy" for ¢ = tspike~
(17.35)

The peak of the conductance change occurs at time t = fje +
Tqyn, and the conductance value at this time is gpeax. The synaptic
current Iy, associated with the synapse is modeled by Iy, () =
Gon()(V — Egy), where Egy, is the reversal potential of the
synapse.

When a synapse is activated by a sequence of action poten-
tials, the net change in conductance is often modeled as a linear
summation of the contributions from each individual action po-
tential. A straightforward implementation based on Eq. (17.35)
would require keeping a time history of spike activity and sum-
mating over all previous spike times. However, this approach is
computationally inefficient and rarely used in large-scale sim-
ulations. There are more efficient methods involving either the
reformulation of the conductance change as a second-order dif-
ferential equation (Wilson and Bower, 1989) or reorganization of
the computation to require the storage of only two running sums
per synapse, rather than a complete time history of activation
(Srinivasan and Chiel, 1993).

Another technique for modeling synaptic conductances uti-
lizes a Markov model approach (Destexhe et al., 1998). The sim-
plest form of such models involves only a single open state and
a single closed state. Such two-state models can be represented
by

C+T o (17.36)

LN
—
B
where C is a closed state, O is an open state, 7' represents neu-
rotransmitter, and « and g are forward and backward rate con-
stants, respectively. Unlike the Hodgkin and Huxley model, the
rate constants, « and $, are independent of membrane voltage.
Let the fraction of receptors in the open state be represented by
r, and let the neurotransmitter concentration be denoted by [7'].
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Then the first-order kinetic equation for this system is

% =a[T](1 —r)— Br.

One simple way to model the neurotransmitter concentration
is to assume that a constant amplitude pulse of transmitter is re-
leased when the action potential arrives at the presynaptic termi-
nal, in which case Eq. (17.37) can be solved analytically for r(r)
(Destexhe et al. 1994). The synaptic current is then modeled by

Isyn(t) = gsynr(t)(v - Esyn)- (1738)

In general, Markov models of this type can be much more
sophisticated than the two-state model presented above. These
more detailed models can have multiple states representing var-
ious open, closed, and desensitized configurations. Such bio-
physically rich Markov models may be particularly useful when
using a neuroinformatics approach to investigate how receptor
properties are altered by variations in the molecular structure and
subunit composition of particular ligand-gated receptors.

(17.37)

Metabotropic Receptors

Up to this point, we have been discussing ionotropic receptors
for which neurotransmitter binding causes direct and immediate
gating of an associated ion channel. Metabotropic receptors, on
the other hand, exert their influence indirectly by acting through
an intracellular second messenger system. For metabotropic re-
ceptors, neurotransmitter binding leads to the activation of in-
tracellular biochemical pathways, which may ultimately link to
the opening or closing of second messenger gated ion channels.
The cascade of reactions that take place in such systems can be
modeled using a combination of Markov models for the compo-
nents that have discrete states and standard biochemical reaction
kinetics for describing chemical concentrations that vary con-
tinuously (Destexhe et al., 1994). For example, the binding of
transmitter 7 to a metabotropic receptor R, leading to the for-
mation of an activated receptor state R*, might be described by
a two-state Markov model:

—

R+T R* (17.39)
PRI

Following receptor activation, there could be several intermedi-
ate biochemical reactions of the general form

AN
A+ B X+Y
B

(17.40)

which can be modeled using standard reaction kinetics (Bhalla,
2001). In Eq. (17.40), « and B are forward and backward rate
constants for the reaction. The chemical concentrations are gov-
erned by a rate equation of the form

d[Al/dt = —a[A][B] + BIX][Y] (17.41)

and a set of relationships that reflect the stoichiometry of the
reaction

d[Al/dt = d[B]/dt = —d[X]/dt = —d[Y]/dt.  (17.42)

In a second messenger cascade, one of the reactants appearing
on the left-hand side of one of the biochemical reactions would
be the activated receptor R*, and one of the products appearing
on the right-hand side would be a second messenger Z that could
serve as a ligand for a postsynaptic ion channel. The gating of

October 12, 2004

17.3 Technical Details and Methodology

this second messenger gated channel could then be described by
a Markov model, such as the following two-state model,
—

C+7Z o

«—

(17.43)

or by a more complex multi-state model. For example, Destexhe
et al. (1994) found that a four-state Markov model was needed
to adequately fit both the rising and decaying phases of a G-
protein-activated GABAp receptor current.

17.3.4 Multicompartment Models

A simple electrical equivalent circuit, such as that shown in Fig-
ure 17.1, can be used to model a localized region of nerve cell
membrane. In general, however, neurons have spatially extended
axons and dendrites with heterogeneous properties. Different re-
gions of the cell will have different diameters and varying types
and densities of ion channels and receptors. Furthermore, quanti-
ties such as the local membrane potential and the local intracellu-
lar calcium concentration can vary significantly across the spatial
extent of a neuron. Multicompartment models provide a means
for handling the spatial complexity of neuron morphology and
the heterogeneity of physical properties. Figure 17.9 illustrates
the compartmental modeling approach for a segment of dendritic
membrane. The multicompartment modeling approach divides
the neuron into a number of smaller spatial compartments, each
of which can be modeled with an electrical equivalent circuit
similar to Figure 17.1. The components of the equivalent cir-
cuit and their numerical values can vary from compartment to
compartment, depending on the particular types of conductances
found in different regions of the cell. Neighboring compartments
are coupled by axial currents that flow between compartments
in the intracellular space. The membrane potential for compart-
ment i, V;, is related to the membrane potentials in neighboring
compartments, V; _; and V; 1, by

dv; Vi =V Viei — Vi
Cm—+1i0n=( ! 1)+( +1 )7
dt Fio1,i Figl,i

(17.44)

where C,, and [, are based on the equivalent circuit for compart-
ment i. The terms r; 1 | ; represent the axial resistances between
neighboring compartments, and the terms (V;11; — Vi)/ric1,
represent the axial currents. Similar relationships exist for branch
points where an axonal or dendritic segment splits into two or
more subsegments. Using these techniques, multicompartment
models can describe arbitrarily complex cell morphologies. De-
tailed advice on how to construct, parameterize, and test multi-
compartment models can be found in Segev and Burke (1998)
and De Schutter and Steuber (2001).

17.3.5 Network Models

Previous sections have covered techniques for modeling single
neurons, ion channels, and individual synapses. Using these tech-
niques, it is relatively straightforward to create network models,
in which the spike outputs from certain model neurons provide
synaptic inputs to other neurons in the network. There are two
main issues to consider in constructing network-level models.
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Figure 17.9 Compartmental approach for single-neuron modeling. The dendrites (A) are
divided into distinct regions that are represented by cylindrical compartments (B). Each
compartment can have different physical characteristics (membrane potential, length,
diameter, channel types, channel densities, etc.). The physical properties are modeled by an
electrical equivalent circuit (C). In the circuit model, neighboring compartments are coupled
by resistors representing the axial resistance of the intracellular space. Branch points are

handled in a similar manner (not shown).

One involves choosing an appropriate mathematical representa-
tion for the propagation of action potentials between neurons.
The other issue has to do with techniques for specifying the
synaptic connectivity within the network.

In principle, the propagation action potentials between neu-
rons could be handled using Hodgkin—Huxley conductances and
a multicompartmental description of the axon and its terminal
arbor. This approach is sometimes used when the scientific ques-
tions being addressed pertain explicitly to mechanisms of action
potential propagation (Manor et al., 1991). However, it is com-
putationally expensive to use a full multicompartment model
to describe every axon and terminal arbor in a large network.
Because of the all-or-none nature of the action potential, it is
often possible to use a more efficient technique in which action
potentials are represented as discrete temporal events. In this
event-based approach, an action potential generated by neuron i
at time 1; is represented as a time-stamped event that is used to

trigger synaptic input to a target neuron j after some time de-
lay At;;. Propagation along the axon is not modeled explicitly;
rather it is implicit in the axonal propagation delay At;;. Recall
thata single axon typically makes synaptic contacts with multiple
target neurons. In general, the propagation delay Af;; can have
different numerical values for each of the possible postsynaptic
targets.

The second issue in network modeling involves specification
of the connectivity between neurons. For small network mod-
els, this is often handled on a case-by-case basis, whereas large
network models usually require a rule-based approach. For ex-
ample, a model of an invertebrate central pattern generator might
involve 10 neurons with an average of five synapses per neuron,
resulting in approximately 50 synaptic connections. Specifica-
tion of the synaptic properties (receptor type, reversal potential,
peak conductance, propagation delay, etc.) could easily be han-
dled on a synapse-by-synapse basis. In contrast, a network model
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of alocal region of mammalian visual cortex might involve on the
order of 10,000 neurons with an average of 100 synapses per neu-
ron, resulting in one million synaptic connections. In this case,
a synapse-by-synapse specification would be unfeasible and a
rule-based approach would be utilized. For example, a connec-
tion rule might specify that all neurons of type A (e.g., inhibitory
interneurons) make a particular type of synaptic connection (e.g.,
GABAergic) with all neurons of type B (e.g., pyramidal cells)
that lie within a fixed radius. The rule might also specify how
the peak conductance and axonal propagation delay vary with
target distance.

17.3.6 Software Tools

Fortunately, sophisticated software packages are available to fa-
cilitate the development, implementation, and dissemination of
biophysically detailed neural models. Two of the most widely
used tools are GENESIS (GEneral NEural SImulation System)
(Bower and Beeman, 1998; Bower et al., 2002) and NEURON
(Hines and Carnevale, 2002). Both of these modeling environ-
ments are designed for constructing biophysically detailed mul-
ticompartment models of single neurons, and they also provide
modeling tools that span from the molecular level to the network
level. Both GENESIS and NEURON provide high-level lan-
guages for model specification, predefined sets of neural building
blocks, and graphical user interface elements for simulation con-
trol and visualization. To construct a specific neural model, the
model specification language is used to define and link appro-
priate sets of predefined building blocks to create a functional
model. The basic building blocks include such things as com-
partments or cable segments for modeling neuron morphology,
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voltage-gated and ligand-gated conductances, components for
intracellular diffusion and buffering of ions, chemical and elec-
trical synapses, and various forms of synaptic plasticity. Other
building blocks provide the model with external inputs and out-
puts, including file I/O and graphical displays. Some building
blocks provide models of electrophysiological instrumentation
like stimulus generators and voltage-clamp circuits, which allow
users to closely model the experimental setups that are used in
empirical studies. Custom user-defined elements can be created
if the required modeling component is not already part of the pre-
defined set of building blocks. More information on these mod-
eling environments, including documentation, tutorials, users
groups, and workshop announcements, can be found on the Web
by following the links provided in the Web Resources section.

17.4 CURRENT APPLICATIONS

Hundreds of biophysically detailed neural models have been de-
veloped using GENESIS, NEURON, and similar modeling tools.
The scientific issues addressed in these models span a broad
range of topics, including intracellular signaling, dendritic pro-
cessing, neural oscillations, central pattern generation, motor
control, sensory coding, feature extraction, learning, and mem-
ory. See the subsection entitled “Web Resources™ for links to
research publications that have been generated using GENESIS
and NEURON. An illustrative example of this type of biophys-
ically detailed modeling approach is provided by the cerebel-
lar Purkinje cell model developed by De Schutter and Bower
(1994a,b) using GENESIS. The dendritic morphology shown
in Figure 17.10 contains approximately 1600 distinct compart-
ments with lengths and diameters based on detailed anatomical

Figure 17.10 Representations of the membrane potential and calcium concentration in a large
compartmental model of a cerebellar Purkinje cell following synaptic activation. (A—C) Membrane
potential 1.4, 4.0, and 10.0 ms after synaptic activation. (D, E) Intracellular Ca>* concentration 1.4 and
4.0 ms after activation. (F) Membrane potential (red trace) and Ca2* concentration (green trace) in the
cell body following activation. The vertical white bars indicate the times at which the false color images
in panels A-E were generated. From De Schutter and Bower (1994b, with permission).
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reconstructions of an actual Purkinje cell (Rapp etal., 1992). The
model includes 10 different types of voltage-dependent chan-
nels: two Na* channels (fast and persistent), two Ca>* channels
(T-type and P-type), three voltage-dependent K* channels, and
two Ca’>*-dependent K* channels. The channel properties were
modeled using Hodgkin—Huxley equations, and the modeling
parameters were constrained by empirical voltage-clamp data
where available. The channels were distributed differentially
over three zones of the Purkinje cell. Synaptic inputs were
modeled using a dual exponential version of the alpha func-
tion [Eq. (17.35)] that allows for different time constants for the
rising and falling phases of the synaptic waveform (Wilson and
Bower, 1989). Figure 17.10 shows the response of the model to a
large synchronous synaptic activation over a large portion of the
dendritic tree. This pattern of synaptic input represents activa-
tion of the Purkinje cell by a climbing fiber input. The so-called
“complex spike” response of a Purkinje cell to climbing fiber
stimulation has been well studied experimentally. The ability of
the model to reproduce known membrane voltage and intracel-
lular calcium characteristics of a complex spike was one of the
benchmarks for tuning certain model parameters and for evaluat-
ing the underlying modeling assumptions. The simulation results
summarized in Figure 17.10 represent only one of several stud-
ies carried out using the Purkinje cell model (De Schutter and
Bower, 1994a,b). After tuning the model to reproduce a range
of in vitro firing behaviors, the model was used to make predic-
tions about the in vivo firing patterns of Purkinje cells. The model
has been particularly useful in elucidating the role of dendritic
inhibition in shaping neural response properties.

17.5 LIMITATIONS

There are several limitations to keep in mind when developing
biophysically detailed neural models. Perhaps one of the most
important is that such models are actually highly impoverished
relative to the true richness and complexity of the underlying bi-
ology. Even though these models are described as “biophysically
detailed,” many aspects of cell and membrane physiology have
been stripped away in the modeling process. The art of creating
a good model involves knowing which details are important and
which details can be safely disregarded. However, details that are
unimportant in one functional context may become pivotal in a
different context. Thus, one should avoid thinking of any par-
ticular model, such as the Purkinje cell model described above,
as a full and complete description of the underlying biological
system.

Itis better to think of a neural model as an extended hypothesis
that is designed to address a restricted range of neurobiological
function. As an extended hypothesis, each model embodies a
large number of assumptions. Certain assumptions will be well
supported by empirical data, while others will be largely spec-
ulative. For the purpose of hypothesis testing, it is important
to keep track of all the underlying assumptions and the corre-
sponding empirical constraints on those assumptions. This is one
area where neuroinformatics tools can play a key role in helping
modelers establish and document links between each assump-
tion and the set of empirical results that impact that particular
assumption. In terms of hypothesis testing, an important limita-
tion to keep in mind is that even if a neural model successfully
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reproduces certain empirical results, it does not imply that all
the underlying assumptions in the model are true. Likewise, if
a model fails to agree with some piece of empirical data, the
fact that the “extended hypothesis” is falsified does not directly
indicate which of the underlying assumptions might be respon-
sible for the disagreement. Therefore, it is not particularly useful
to simply label a neural model as “right” or “wrong.” Instead,
neural modeling should be viewed as an integral component of
the scientific method, in which progress is made through mul-
tiple iterations of experimental observation, hypothesis genera-
tion (model building), prediction (model simulation), and testing
(comparison with empirical data).

17.6 OUTLOOK

Based on research trends over the past decade, it is clear that
both neuroinformatics and electrophysiological modeling are be-
coming increasingly important tools for exploring the functional
properties of neural systems. Several ongoing research and de-
velopment efforts are leading toward a convergence and inte-
gration of neuroinformatics and modeling tools that will greatly
enhance the ability of neuroscientists to make use of these pow-
erful approaches. Much of this development effort is taking place
in the context of the Human Brain Project (Huerta et al., 1993;
Koslow and Huerta, 1997; Shepherd et al., 1998). Several re-
search groups are actively developing large electrophysiological
databases, common data representations to facilitate information
sharing, software tools for electrophysiological data analysis and
visualization, neuroinformatics tools for search and retrieval, and
neuroinformatics-based extensions to neural modeling software
packages. Overviews of several of these projects are available in
Koslow and Huerta (1997), and more information on the current
status of these various efforts can be found on the Human Brain
Project website (see subsection entitled “Web Resources”).
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Web Resources

CATACOMB: a simulation system for biologically based network mod-
els (http://www.compneuro.org/catacomb/).

GENESIS: a general-purpose simulation system for single neuron
and network models (http://www.genesis-sim.org/GENESIS/). For
a list of research publication using the GENESIS simulator, see
http://www.genesis-sim.org/GENESIS/pubs.html.

Human Brain Project: a multi-agency program supporting neu-
roinformatics research and development (http://www.nimh.nih.gov/
neuroinformatics/index.cfm).

NEOSIM: a prototype for the next generation of neural simulators with
plug-in support for models developed in other simulation environ-
ments, such as GENESIS and NEURON (http://www.neosim.org/).

NEURON simulator: a general-purpose simulation system for sin-
gle neuron and network models (http://www.neuron.yale.edu/). For
a list of research publication using the NEURON simulator, see
http://www.neuron.yale.edu/neuron/bib/usednrn.html.

NeuroML: a prototype markup language for describing neuroscience
simulation models (http://www.neuroml.org/).

NeuroSys: a prototype database system providing informatics and mod-
eling components (http://cns.montana.edu/research/neurosys/).

NTSA Workbench: a prototype database system for neuronal time-series
data (http://soma.npa.uiuc.edu/isnpa/isnpa.html).

SenseLab: prototype databases of cell properties, membrane properties,
and neural models (http://senselab.med.yale.edu/senselab/).

USC Brain Project: a prototype neuroinformatics tools for linking mul-
tiple databases and neural models (http://www-hbp.usc.edu/).
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