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We study the encoding of weak signals in spike trains with interspike
interval (ISI) correlations and the signals’ subsequent detection in sen-
sory neurons. Motivated by the observation of negative ISI correlations
in auditory and electrosensory afferents, we assess the theoretical per-
formance limits of an individual detector neuron receiving a weak sig-
nal distributed across multiple afferent inputs. We assess the functional
role of ISI correlations in the detection process using statistical detec-
tion theory and derive two sequential likelihood ratio detector models:
one for afferents with renewal statistics; the other for afferents with nega-
tively correlated ISIs. We suggest a mechanism that might enable sensory
neurons to implicitly compute conditional probabilities of presynaptic
spikes by means of short-term synaptic plasticity. We demonstrate how
this mechanism can enhance a postsynaptic neuron’s sensitivity to weak
signals by exploiting the correlation structure of the input spike trains.
Our model not only captures fundamental aspects of early electrosensory
signal processing in weakly electric fish, but may also bear relevance to
the mammalian auditory system and other sensory modalities.

1 Introduction

In response to a growing body of experimental studies on short-term
synaptic plasticity (Tsodyks & Markram, 1997; Zucker & Regehr, 2002; Xu-
Friedman & Regehr, 2004; Blitz, Foster, & Regehr, 2004), models of nonlinear
synaptic transmission have emerged that emphasize the functional impor-
tance of the relative timing of presynaptic action potentials (Maass & Zador,
1999; Markram, 2003; Abbott & Regehr, 2004). Sensitivity of synaptic trans-
mission to the history of presynaptic spikes becomes especially relevant
when interspike intervals (ISIs) are correlated. Such input correlations have
been reported in various sensory modalities (Lowen & Teich, 1992; Teich,
Turcott, & Siegel, 1996; Bahar et al., 2001) and are particularly prominent in
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Figure 1: Schematic representation of a sensory neuron receiving afferent input
from an array of spiking units. The stimulus intensity is encoded in the afferent
firing rates. The noisy pattern of gray-scale values in the input array depicts
spike counts obtained within a fixed time window. The insets show a spike train
of an individual afferent and the corresponding joint ISI histogram, revealing
negative ISI correlations. Short ISIs tend to be followed by longer ISIs and vice
versa. Since the firing activity is stochastic, the spike counts exhibit variability.
For temporally correlated ISIs, the spike count variability depends on the count
window length.

the active electrosensory system of weakly electric fish (Ratnam & Nelson,
2000).

The negative ISI correlations observed in the electrosensory system have
been successfully modeled using an integrate-and-fire type mechanism
with threshold fatigue (Chacron, Maler, & Longtin, 2001; Brandman & Nel-
son, 2002). In these models, the firing threshold is elevated following an
action potential and subsequently decays toward a baseline level. With ap-
propriate parameters, the ISI sequence exhibits negative correlations, that
is, short ISIs tend to be followed by longer ISIs and vice versa.

1.1 Detection of Weak Signals. In this article we explore the interplay
between ISI correlations and fast synaptic plasticity in sensory systems that
respond to extremely weak stimuli by detecting small changes in afferent
spike activity.

Figure 1 shows a generalized scheme of a detector neuron receiving input
from a receptor array via afferent fibers. The gray-scale intensity represents
stimulus intensity encoded as a noisy, localized pattern of afferent firing
rates above a baseline activity. Throughout this article, we assume there
are no interconnections among the afferent fibers and hence no spatial
correlations in the activation pattern other than those due to the stimulus.
We are particularly interested in situations where the signal-to-noise ratio is
low, such that the stimulus-induced change in activity is small compared to
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intrinsic fluctuations of sensory afferent activity. Under these circumstances,
the detector neuron has to perform spatiotemporal averaging to enhance
the signal relative to the stochastic background activity.

1.2 Sensory Neurons as Likelihood Ratio Detectors. The accumulation
and evaluation of evidence conveyed by the activities of multiple afferents
can be assessed using a key concept from statistical detection theory: the
likelihood ratio. This quantity compares the probability of the afferent ac-
tivity in the presence of a stimulus (baseline plus signal) and without a
stimulus (pure baseline) by computing the ratio

p(afferents; signal + baseline)
p(afferents; baseline)

.

Using a more formal notation, we introduce the detection-theoretic defini-
tion of an optimal detector. Let �a be the input data vector (afferent activ-
ities). The ratio of data likelihoods under assumptions of signal presence
(hypothesis H1) and absence (null hypothesis H0), respectively, is compared
to a threshold γ :

� = ln
p(�a; H1)
p(�a; H0)

> γ. (1.1)

The detector decides in favor of H1 if the threshold is exceeded. The choice
of threshold value determines the probability of a false alarm. According
to the Neyman-Pearson theorem (Kay, 1998), the likelihood ratio detector is
optimal in the sense that it achieves maximum probability of detection for
a given false alarm probability.

Although the Neyman-Pearson theorem holds for any monotonic func-
tion of the likelihood ratio, one usually takes the logarithm. Under the inde-
pendence assumption, the ensemble activity can be expressed as a product
of individual afferent probabilities, and the logarithm of the product of
probabilities then transforms into a sum of log likelihoods. Moreover, the
logarithm of the likelihood ratio can be written as the difference of the log
likelihoods.

Temporal evidence accumulation can be accomplished by summing the
likelihood ratios obtained at different time instances. This procedure is
commonly referred to as the cumulative sum (CUSUM) algorithm (Page,
1954) and is a repeated sequential likelihood ratio test (Wald, 1948). The
resultant quantity is the cumulative log likelihood ratio, denoted by �cum

and defined in a recursive fashion:

�cum[k + 1] = max{�cum[k] + �[k], 0}; �cum[0] = 0. (1.2)
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Note that the cumulative log-likelihood ratio �cum undergoes rectification.
The detector decides H1 at time step k if

�cum(k) > γ̃ ,

where γ̃ is a threshold that determines the false alarm rate.
Intuitively, the rectification in equation 1.2 seems advantageous, since

it limits the accumulation of negative evidence, allowing a faster recovery
of the cumulative likelihood ratio once �[k] turns positive. In addition, it
has been formally proved (Moustakides, 1986) that this scheme is indeed
optimal in the sense that for a given false alarm rate, the CUSUM algorithm
exhibits the shortest average detection delay.

It has been demonstrated that neurons have the ability to carry out likeli-
hood ratio computations (Gold & Shadlen, 2001). In the context of decision
making and motion perception, evaluating the logarithm of a likelihood
ratio is equivalent to calculating the difference in firing rate of two neurons
with opposite preferred directions of motion, provided the neural responses
are described by normal, Poisson, or exponential densities (Gold & Shadlen,
2001). Furthermore, if the responses are independent and identically dis-
tributed over time, temporal accumulation of evidence, as in the CUSUM
procedure, can be accomplished by an integrate-and-fire neuron (Gold &
Shadlen, 2002).

1.3 Spike Train Statistics and Detection Performance. To assess the-
oretical detection performance limits of an individual sensory neuron for
different input spike train statistics, we first derive a CUSUM detector
model based on equation 1.2 for afferents with renewal spike statistics.
Though designed for a renewal process, this type of detector can also op-
erate with temporally correlated input. Detection performance has been
shown to improve in the presence of negative ISI correlations, since a de-
tector can passively benefit from the reduced spike count variability caused
by the correlations (Ratnam & Nelson, 2000; Chacron et al., 2001; Goense &
Ratnam, 2003).

The main contribution of this article is a more sophisticated detector
model that actively utilizes the redundancy in temporally correlated input.
Rather than matching the average firing probability, this detector operates
with an estimate of the current firing probability at each time instance. The
interdependence of adjacent ISIs requires the use of conditional likelihoods
dependent on the spike train history, which poses a computational challenge
and raises the question of how conditional firing probabilities could be rep-
resented in neural systems. We suggest that a record of afferent spike train
history can be kept implicitly in the form of short-term synaptic plasticity
and demonstrate that such synaptic plasticity would enable a sensory neu-
ron to robustly track the fluctuations of the presynaptic firing probabilities.
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Thus, the incoming evidence can be evaluated in terms of current condi-
tional log-likelihood ratios, resulting in more efficient detection of weak
signals.

1.4 Relation to Electrosensory Signal Processing. Our simplified de-
tector model is motivated by the study of electrosensory prey detection
in weakly electric fish (Nelson & MacIver, 1999). The model captures the
fundamental aspects of the feedforward pathway at the first stage of elec-
trosensory processing, in the electrosensory lateral line lobe (ELL), which
receives electrosensory afferent input.

Typical electrosensory stimuli induced by small prey are localized and
extremely weak perturbations of the fish’s self-generated electric field. The
resultant minute changes in transdermal potential are sensed by cutaneous
electroreceptors and encoded in the activities of primary electrosensory
afferent nerve fibers. Due to the small signal amplitude and the variability
of afferent firing, the fish must solve a challenging detection task. It is
estimated that small prey (such as Daphnia magna), at a typical detection
distance of 2 cm from the skin, will cause only about one extra spike above a
background of 60 spikes within a 200 ms interval (Ratnam & Nelson, 2000).

Our simulations show that detection performance is enhanced through
the interplay between ISI correlations and synaptic plasticity in a model
neuron. We speculate that a neural correlate of this mechanism could be
implemented by short-term plasticity at ELL excitatory afferent synapses
onto ELL pyramidal neurons.

1.5 Outline. First, we formulate the prey detection task within the
framework of statistical detection theory and establish a link between the
key concept of the likelihood ratio and the integrate-and-fire model of a sen-
sory neuron. Next, we develop two alternative sequential likelihood ratio
detector models—one for uncorrelated and the other for correlated spike
trains. We then specify the electrosensory signal of a prey-like stimulus in
a simplified cylindrical geometry, derive the corresponding models for a
putative electrosensory detector neuron, and compare their performance in
the presence or absence of negative correlations in the input spike trains.
Finally, we discuss the implications of our results with regard to a possible
role of short-term synaptic plasticity in the enhanced detection of weak
signals encoded in correlated spike trains.

2 A Log-Likelihood Ratio Detector for Binomial Spike Trains

Let ai [k] be the spike state of the ith input fiber at the current time step k,
and �a [k], the spike state of an ensemble of n fibers:

ai [k] ∈ {0, 1}; �a [k] ∈ {0, 1}n.



2884 N. Lüdtke and M. Nelson

Assuming independence, firing probabilities for individual afferents can be
multiplied, and the logarithm of the likelihood ratio is then given by

�= log
P(�a [k]; H1)
P(�a [k]; H0)

= log
n∏

i=1

P(ai [k]; H1)
P(ai [k]; H0)

=
n∑

i=1

log P(ai [k]; H1) − log P(ai [k]; H0). (2.1)

In electrosensory afferents, the independence assumption is well justified
due to the absence of interconnections between afferent ganglion cells
(Maler & Berman, 1999).

A simple spiking model is the binomial probability encoder, which rep-
resents the signal amplitude by a proportional change in firing probability
at each time step. The resultant spike train is a renewal process: the ISIs
are independent random variables. The likelihood of an individual afferent
spike state ai is

log P(ai [k]; H1) =
{

log[rbase�t + si g�t] if ai [k] = 1

log[1 − rbase�t − si g�t] if ai [k] = 0
, (2.2)

where rbase is the baseline firing rate, si the signal strength at the ith receptor
site, g the gain, and �t the duration of a time step.

If the increment in firing rate caused by the signal, si g, is small compared
to the baseline firing rate, the logarithm in equation 2.2 can be approximated
using a first-order Taylor expansion: log(x + x0) ≈ log x0 + x/x0. Further-
more, one can combine the two rows by weighting the entries with ai and
1 − ai , respectively. Hence,

log P(ai [k]; H1) ≈ ai [k]
[

log(rbase�t) + g�t si

rbase�t

]

+ (1 − ai [k])
[

log(1 − rbase�t) − g�t si

(1 − rbase�t)

]
. (2.3)

Accordingly, one can obtain the corresponding probability for the null hy-
pothesis by setting the signal amplitude to zero (si = 0):

log P(ai [k]; H0) ≈ ai [k] log(rbase�t) + (1 − ai [k]) log(1 − rbase�t). (2.4)

Subtracting equation 2.4 from 2.3 yields:

log P(ai [k]; H1) − log P(ai [k]; H0)

= ai [k]
g�t si

rbase�t
− (1 − ai [k])

g�t si

(1 − rbase�t)
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= Aai [k] g�t s̃i

[
1

rbase�t
+ 1

1 − rbase�t

]
︸ ︷︷ ︸

wi

− A
g�t s̃i

(1 − rbase�t)︸ ︷︷ ︸
bi

= A
[

ai [k] wi − bi
]
, (2.5)

where A is the stimulus amplitude and s̃i denotes the normalized signal
strength at receptor site i , in the sense that A = max{si } and si = As̃i . There-
fore, the likelihood ratio of the entire ensemble state at time step k is given
by

log
P(�a [k]; H1)
P(�a [k]; H0)

= A

[
n∑

i=1

ai [k]wi − b

]
, where b =

n∑
i=1

bi . (2.6)

The resultant detector constitutes a linear filter with a fixed spatial receptive
field, since the afferent inputs ai are weighted according to the expected
relative signal strength s̃i at the associated receptor sites.

Note that linearity in ai [k] is not caused by the linearization in signal
strength. The Taylor approximation in si merely makes it possible to factor
out the signal amplitude. Hence, the detector responds preferentially to a
stimulus with particular spatial characteristics, and the absolute stimulus
intensity determines the detection delay. Therefore, in all of our simulations,
we focus on the spatial aspects of detection and restrict our analysis to stim-
uli with constant spatial characteristics and instantaneous onset. Adapting
the detector to more complex stimuli with varying intensity and spatial
extent would require a varying threshold and dynamic weights matched to
the expected time course of the signal intensity at the receptor locations.

3 Spike Trains with Negative ISI Correlations

Correlations among neighboring ISIs can influence the spike count statistics
on timescales well beyond that of the mean ISI. For instance, spike trains
with negative ISI correlations can exhibit a lower spike count variability
than a surrogate renewal process with identical ISI distribution or a Poisson
process. Such long-term regularization has been observed in the auditory
nerve (Lowen & Teich, 1992) and is particularly prominent in electrosen-
sory afferents, where the Fano factor (variance to mean ratio) of the spike
count can be reduced by more than an order of magnitude at behaviorally
relevant time scales of 100 to 200 ms (Ratnam & Nelson, 2000). It has been
suggested that such regularization enhances the encoding and detectability
of weak signals (Ratnam & Nelson, 2000; Chacron et al., 2001; Brandman &
Nelson, 2002; Goense & Ratnam, 2003). Therefore, it is expected that a naive
detector based on equation 2.6 would passively benefit from the higher
signal-to-noise ratio of regularized input spike trains. However, there is
a potential additional benefit: ISI correlations imply a certain degree of
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predictability (Raciot & Longtin, 1997), since individual spike events are
statistically dependent on previous ISIs.

3.1 Toward a Correlation-Sensitive Detector. The nonrenewal prop-
erty of the input spike trains should be accounted for in the calculation of
the cumulative likelihood ratio. Since the firing probability is determined
by previous spike events, one would have to consider conditional proba-
bilities of spike states dependent on the spike train history. In the simplest
case, the current firing probability depends on only the previous ISI, and
the likelihood ratio would be of the form

log
P(�a [k]

∣∣ I [k − 1]; H1)

P(�a [k]
∣∣ I [k − 1]; H0)

,

where the conditional probabilities could be obtained from joint ISI his-
tograms. However, since experimentally observed Markov orders of elec-
trosensory afferent ISIs are at least five or greater (Ratnam & Nelson, 2000),
one is faced with a dilemma: while it may be technically feasible to obtain
estimates of conditional firing probabilities using higher-order joint his-
tograms from baseline spike trains of sufficient length, such an approach
would clearly be biologically implausible and thus provide no further in-
sight into a possible physiological mechanism. Therefore, we propose a
solution based on the nonlinear dynamics of the spike generating process.

3.2 A Nonlinear Adaptive Threshold Model. We introduce a general-
ization of the time-discrete afferent model by Brandman and Nelson (2002).
As in most other models of electrosensory afferents, the firing threshold is
raised following an action potential and decreases as long as no spike is
generated. This type of threshold adaptation leads to negative ISI correla-
tions, since the threshold level at each time step depends on its previous
value, thus creating a memory of the spike train history. The equations of
the Brandman-Nelson model are:

v[k] = c s[k] + W[k] (3.1)

a [k] =
{

1 if v[k] > θ [k]

0 otherwise
(3.2)

θ [k + 1] = θ [k] − β/α + a [k] β, (3.3)

where v is the membrane potential, s the signal amplitude, W ∼ N (0, σ ) the
intrinsic gaussian white noise component, θ the firing threshold, and c the
gain. Beginning with an arbitrary initial value θ [0], the threshold decays
by a fixed amount of β/α during a time step and, if an action potential
has been generated, is raised by amount β. For more biological realism, the
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Figure 2: The sigmoid function governing the threshold increment for several
different values of η. The increment is normalized by the factor 2β. For ex-
tremely large η, the sigmoid approaches a step function; for η = 0, it reduces to
a constant.

linear decay could be replaced with an exponential one (Chacron, Longtin,
St. Hilaire, & Maler, 2000). Since β relates an action potential at step k to the
firing threshold at step k + 1, β controls the degree of correlation between
subsequent ISIs.

In our modified version of the above model, we introduce a new refrac-
tory term in equation 3.3. Instead of a constant boost following an action
potential, the threshold is now raised by a variable amount dependent on
its current value θ [k]:

θ [k + 1] = θ [k] − β/α + a [k] β g
{
θ [k]

}
,

where g(θ ) = 2e−ηθ

1 + e−ηθ
. (3.4)

If the threshold is low, it can be boosted by a maximum amount determined
by the parameter β. If the threshold has reached a high level, the boost is
smaller than β; at a very high threshold level, virtually no further increase
is possible and the decay exceeds the boost. The increase is governed by
the sigmoid function g(θ; η). The saturation parameter η controls the de-
gree to which the increase depends on threshold level (see Figure 2), thus
also affecting ISI correlations. In the special case that η = 0, the sigmoid in
equation 3.4 reduces to a constant, g(θ ) ≡ 1, resulting in the same constant
boost as in the linear adaptive threshold model.
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Level-dependent threshold boosting is also a feature of the (time con-
tinuous) model of Chacron, Pakdaman, and Longtin (2003). The difference
is that instead of a linearly increasing function, in our model the thresh-
old boost is governed by a nonlinear monotonically decreasing function
of threshold level. Our assumption is biologically plausible, since physi-
ological firing thresholds cannot increase arbitrarily and must eventually
saturate. Though not biophysically detailed, our model exhibits spike train
statistics that closely resemble those of actual afferents. Figure 3 compares
the ISI statistics of the model to those of an extracellular afferent recording in
the absence of electrosensory stimulation due to external objects. We use the
term baseline rather than spontaneous activity since the electroreceptors are
always driven by the continuously oscillating field generated by the fish’s
electric organ, which remains intact under anesthesia and immobilization.

In appendix A, we provide a detailed analysis of the influence of parame-
ter η on the dynamics of threshold sequences. The properties of the iterative
map defined by equation 3.4 play a crucial role in deriving an advanced
likelihood ratio detector.

3.3 The Firing Probability. In the above model, the firing probability
at time step k is given by the tail probability of the potential v, which is
obtained by integrating the probability density function p(v):

P[k] = P(v[k] > θ [k]) = 1 −
∫ θ [k]

−∞
p(v) dv.

We will assume the noise to be gaussian of zero mean and variance σ .
Since the potential v is the sum of the signal and the noise component, the
pdf p(v) is also gaussian with the same variance but with mean µ = c s.
Equivalently, one can integrate a gaussian of zero mean and subtract the
signal contribution from the threshold,

P[k] = 1
2

− 1√
2πσ

∫ θ [k]−c s[k]

0
e−v2/2σ 2

dv,

where the gaussian integral

1√
2πσ

∫ 0

−∞
e−v2/2σ 2

dv = 1
2

has already been subtracted.
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Figure 3: Comparison of the baseline interspike interval statistics of spike trains
obtained from a tonic electrosensory afferent (A, C, E) and the nonlinear adap-
tive threshold model (B, D, F). Model parameters were automatically optimized
by maximum likelihood estimation (see section 3.7.1). The timescale is measured
in units of the electric organ discharge (EOD) cycle, which is roughly 1 ms. The
afferent spike train was recorded extracellularly from a weakly electric fish
(Apteronotus leptorhynchus; data by Rama Ratnam).

After applying the transformation ṽ = v/
√

2σ , the firing probability can
be expressed in terms of the complementary error function (erfc):

P[k] = 1
2

− 1√
π

∫ θ [k]−c s[k]√
2σ

0
e−ṽ2

d ṽ = 1
2

erfc
(

θ [k] − c s[k]√
2σ

)
. (3.5)
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Figure 4: (A) Spike train generated by our nonlinear adaptive threshold model
model and (B) the corresponding firing probability. The time course of the firing
probability resembles that of the postsynaptic current at a depressing synapse.
Note that the very short timescale is not an inherent feature of the model;
parameters were chosen to match the high baseline firing rates of electrosensory
afferents.

Figure 4 shows a model spike train and the (discretized) time course of
the corresponding firing probability, which bears a striking resemblance to
the postsynaptic current at a depressing synapse, except at a much shorter
timescale. Typical cortical time constants of short-term synaptic depression
range in the hundreds of milliseconds (Zucker & Regehr, 2002). However,
the timescale of the model is flexible and can be controlled via the parame-
ter α in equation 3.4, which determines the mean ISI and hence the baseline
firing rate. In Figure 4, the baseline firing rate is set to approximately 300
Hz in order to match typical baseline firing rates of electrosensory affer-
ents. Choosing a lower baseline firing rate would increase the timescale of
the course of the firing probability accordingly. Therefore, we hypothesize
that a form of short-term synaptic plasticity could enable a postsynaptic
neuron to track the varying firing probabilities associated with its afferent
input.

3.4 The Log-Likelihood Ratio for Correlated Spike Trains. In a similar
manner as in section 2, one can derive an expression for the logarithm of
the likelihood ratio for correlated model afferent spike trains. However,
there is no longer a constant baseline firing rate, since the threshold is a
dynamic variable influenced by previous spike events. Using equation 3.5,
one can calculate the likelihood of individual afferent spike states ai [k]
under the two alternative hypotheses (denoted by Hx). Instead of constant
firing probabilities P(ai [k]; Hx), the likelihood ratio consists of conditional
probabilities P(ai [k] | θi [k]; Hx), and the threshold value θi [k] contains a
record of the entire spike train history up to time k. Thus, the logarithm of
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the likelihood ratio has the following form:

�
(�a [k]

) =
n∑

i=1

log P
(
ai [k]

∣∣ θi [k]; H1
)− log P

(
ai [k]

∣∣ θi [k]; H0
)
. (3.6)

The conditional probabilities P(ai [k] | θi [k]; Hx) replace more complicated
higher-order Markov models with transition probabilities of the type

P
(
ai [k]

∣∣ ai [k − 1], ai [k − 2], . . . , ai [k − m]; Hx
)
,

where the spike train history is explicitly taken into account. In the sub-
sequent sections, we describe a mechanism that enables the detector to
track the changing thresholds θi and thus the firing probabilities. By itera-
tively updating the estimate of the current threshold values, θi [k], arbitrary
Markov orders can be taken into account implicitly, using the same formal-
ism without increasing the model complexity. The entire spike train history
can thus be absorbed into one variable.

Using equation 3.5, one can calculate the likelihood of the state of the ith
afferent at time k under the signal hypothesis:

log P
(
ai [k]

∣∣ θi [k]; H1
)

=



log
[

1
2 erfc

(
θi [k]−c si [k]√

2σi

)]
if ai [k] = 1

log
[
1 − 1

2 erfc
(

θi [k]−c si [k]√
2σi

)]
if ai [k] = 0

. (3.7)

Equation 3.7 can also be written as

log P(ai [k] | θi [k]; H1) = ai [k] log
[

1
2

erfc
(

θi [k] − c si [k]√
2σi

)]

+ (1 − ai [k]
)

log
[

1 − 1
2

erfc
(

θi [k] − c si [k]√
2σi

)]
. (3.8)

Again, one can linearize the expressions, since the signal si [k] introduces
only a small perturbation: c si [k] 	 θi [k]. Hence,

log
[

1
2

erfc
(

θi [k] − c si [k]√
2σi

)]

≈ log
1
2

+ log erfc
(

θi [k]√
2σi

)
−

erfc′
(
θi [k]/

√
2σi

)
erfc

(
θi [k]/

√
2σi

) c si [k]√
2σi

= log
1
2

+ log erfc
(

θi [k]√
2σi

)
−

√
2 c exp

(
− θi [k]2/2σ 2

i

)
√

πσi erfc
(
θi [k]/

√
2σi

) si [k], (3.9)
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where the prime in the first row denotes the derivative of the complemen-
tary error function, which is defined as

erfc′(x) = d
dx

{
1 − 2√

π

∫ x

0
e−x̃2

dx̃
}

= − 2√
π

e−x2
.

Analogously, one obtains a linearization of the second term in equation 3.8:

log
[

1 − 1
2

erfc
(

θi [k] − c si [k]√
2σi

)]
≈

log
1
2

+ log
[

1 + erf
(

θi [k]√
2σi

)]

−
√

2 c exp
(
− θi [k]2/2σ 2

i

)
√

πσi

[
1 + erf

(
θi [k]/

√
2σi

)] si [k]. (3.10)

For convenience, the regular error function erf is employed using the defi-
nition erfc = 1 − erf.

Inserting 3.9 and 3.10 into equation 3.8 yields the afferent log likelihood
under the signal hypothesis. From this result, the log likelihood under the
null hypothesis is obtained by setting the signal intensity to zero (si [k] = 0).
Given these log likelihoods, one obtains the logarithm of the likelihood
ratio of the spike state vector of the afferent ensemble, �(�a [k]):

�
(�a [k]

)= A

√
2
π

n∑
i=1

ai [k]

× ci s̃i [k]
σi


 exp

(
− θi [k]2/2σ 2

i

)
1 − erf

(
θi [k]/

√
2σi

) +
exp

(
− θi [k]2/2σ 2

i

)
1 + erf

(
θi [k]/

√
2σi

)



︸ ︷︷ ︸
wi [k]

− ci s̃i [k]
σi

exp
(
− θi [k]2/2σ 2

i

)
1 + erf

(
θi [k]/

√
2σi

)
︸ ︷︷ ︸

bi [k]

= A

√
2
π

n∑
i=1

ai [k] wi [k] − bi [k], (3.11)
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Figure 5: Plot of the function f (x) = e−x2
/[1 − erf(x)] (circles) and its counter-

part f (x) = e−x2
/[1 + erf(x)] (squares), which appear in the dynamic synaptic

weights and biases of the correlation-sensitive likelihood ratio in equation 3.11.
Both functions are monotonic and well approximated by cubic polynomials
(solid lines).

where A denotes the signal amplitude and s̃i [k] is the normalized signal
at receptor site i . The amplitude can thus be absorbed into the detector
threshold γ . When integrating over time, the mean detection delay will be
proportional to the amplitude if the signal amplitude is constant. Note that
the synaptic weights and the bias terms are time dependent. Since they are
functions of the firing threshold, they implicitly depend on the spike train
history.

Although the analytical expressions for the weights and biases look
complicated, they are smooth monotonic functions that can be well approx-
imated by much simpler functions, such as the cubic polynomial shown in
Figure 5. Thus, from the viewpoint of biological plausibility, the detector is
not as computationally demanding as it may first appear.

3.5 Threshold Prediction. In order to construct a likelihood ratio detec-
tor based on equation 3.11, knowledge of the spike threshold θi [k] is required
at each time step. At first glance, this approach may seem infeasible since
such information is not readily available. However, as we demonstrate in
this section, it is possible to track the fluctuations of the firing threshold by
feeding a model afferent spike train into a dynamical system that mimics
the changes of the threshold in the spike-generating mechanism.

We introduce a predictor variable, 
, that is incremented or decremented,
depending on whether a spike was received at the previous step, in the same
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manner as in equation 3.4:


[k + 1] = 
[k] − β̃/α̃ + a [k] β̃ g̃
{

[k]

}
. (3.12)

Indices have been dropped for simplicity. The predictor variable is initial-
ized with a random value, 
[0], drawn from a gaussian distribution (though
the choice of distribution is not critical). Equation 3.12 defines two alterna-
tive maps that describe how the subsequent threshold value is computed
from its current value. The received spike train controls the choice of map.
In effect, 
 is a variable undergoing change in a dynamical system that
randomly alternates between two deterministic components. If the param-
eters α̃, β̃, and η̃ of the predictor system are identical to those of the spike
generator and if this dynamical system has a stable orbit, the predictor se-
quence (
[k]) will converge toward the sequence of the thresholds (θ [k])
of the spike generator, regardless of the initial value 
[0]. Using equation
3.5, 
[k] can be transformed into the corresponding estimate of the firing
probability, Ppred[k]. Figure 6A shows an example of such convergence of
the predicted firing probability (dotted line) toward the actual firing prob-
ability used to generate the spike train (solid line). From approximately
20 time steps onward, the predictor sequence is tracking the actual firing
probability accurately. The semilogarithmic plot of their difference, shown
in Figure 6B, reveals an exponential convergence. It is this property that en-
ables the predictor 
 to track the actual firing threshold without knowledge
of its initial value θ [0]. Sensitivity to the initial condition would destroy this
property so that the sequences could never synchronize.

Although the convergence in Figures 6A and 6B is demonstrated only
for pure baseline activity, the predictor mechanism is not affected by the
presence of a stimulus. A signal alters the membrane potential v in an ad-
ditive fashion, thus changing the firing probability. However, the threshold
predictor system does not require knowledge of the amount of change in
signal amplitude s, since s does not appear explicitly in the transformation,
equation 3.12. The predictor system implicitly receives information about
the change of firing probability through the incoming spike train, thereby
maintaining its ability to select the correct map to transform 
 at any time
instance.

3.6 Synaptic Plasticity. In order to illustrate the synaptic plasticity in
our model detector neuron, we investigate the behavior of an individual
input weight wi [k] in equation 3.11 and the corresponding bias bi [k] un-
der stimulation with a test spike train, a sequence of bursts. This simu-
lation resembles a typical neurophysiological test for short-term synaptic
plasticity.

Figure 7 demonstrates the plasticity at an individual synapse under
tetanic stimulation. Note that synaptic efficacy rather than a postsynaptic
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Figure 6: (A) Within about 20 time steps, the sequence of predicted firing proba-
bilities (dashed line) has closely approached that of the spike-generating process
(solid line). (B) The logarithm of the prediction error as a function of time re-
veals exponential convergence. The dashed line is a linear fit to the simulation
data. The value of its slope closely approximates the Lyapunov exponent of the
system (see appendix A) for the given set of parameters. A negative slope thus
corresponds to a negative Lyapunov exponent, indicating convergence toward
a stable orbit of the dynamical system.

current is plotted. Hence, this is a genuine nonlinear plasticity effect rather
than a consequence of linear summation of overlapping excitatory postsy-
naptic potentials. The synaptic weight wi exhibits facilitation (see Figure 7B),
whereas the bias bi shows rapid depression (see Figure 7C). The net contri-
bution, the log-likelihood ratio for this afferent, is a combination of the two
(see Figure 7D).

This example reveals how the detector interprets ISI sequences. Com-
pared to the usual baseline activity with short ISIs followed by longer ones
and vice versa, a tetanic burst is an unusual cluster of short ISIs, suggest-
ing the presence of a stimulus. Hence, the likelihood ratio is increasingly
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Figure 7: Behavior of one model synaptic weight and bias term under stimula-
tion with tetanic bursts (A). The synaptic weight exhibits facilitation (B), whereas
the bias shows rapid depression (C). The spike-controlled combination of the
two is the log-likelihood ratio, the evidence contribution of the individual af-
ferent (D). A positive value provides evidence for the presence of a stimulus,
and a negative value suggests the opposite.

positive. In between bursts, there is an unusually long ISI, which is more
likely to occur in the absence of a stimulus. Therefore, the likelihood ratio
decreases into the negative range.

3.7 Tracking the Firing Rate of Biological Spike Trains. Given the
close agreement in the ISI statistics of data and model in Figure 3, one
might wonder whether it is possible to obtain convergence with natural
spike trains. To investigate this, we fed our predictor system, equation 3.12,
with baseline spike trains obtained by in vivo recording from electrosensory
afferent fibers of a weakly electric fish (Apteronotus leptorhynchus). In this
case, the only available information from the afferent neuron is the spike
train. Since the recording was extracellular, the internal fluctuations of the
threshold that determines the firing probability could not be observed.
Therefore, without the “ground truth” sequence (θ [k]), one cannot directly
verify convergence of firing probabilities as in Figure 6A.

To test whether a dynamical system, such as the one defined by equation
3.12, accurately tracks the firing probability of the received spike train,
one can compare the predicted firing probability, denoted by Ppred, with
the empirical spike probability of the received spike train, P(a = 1| Ppred),
for every value of Ppred. Since Ppred can assume any value from zero to one
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(within the numerical precision), we divide the interval [0, 1] into N narrow
bins of width �Pbin = 1/N, into which the sequence Ppred[k] is sorted. For
each bin, the empirical firing probability is approximated by a normalized
spike count obtained through the following procedure:

� Let Pbin be the center of the considered bin.
� Define the set K of all time steps k at which Ppred is within the bin

range:

K = {k | Ppred[k] ∈ [Pbin − �Pbin/2, Pbin + �Pbin/2)}.
Let nbin = |K | be the number of instances for which Ppred[k] is within
the bin.

� Count the spikes that occurred at the time steps recorded in K :

nspikes =
∑
k∈K

a [k].

� The empirical firing probability given the center value of the bin is
then

P(a = 1| Pbin) = nspikes

nbin

.

If the spike train is sufficiently large, the bin width small, and the pre-
dictor correct, Pbin ≈ P(a = 1|Pbin) for each bin. In other words, on average
the midvalue of a bin matches the normalized actual spike count obtained
at all instances k when Ppred[k] ≈ Pbin. Equality would be reached in the limit
�Pbin → 0 and with an infinitely long spike train.

3.7.1 Parameter Estimation. Accurate tracking of the firing probability is
possible only if the parameters of the predictor system match those of the
spike generator. In order to fit our predictor system with the afferent spike
train, we employed a gradient-ascent algorithm to determine the parameter
set α̃, β̃, η̃, and σ̃ for which the recorded spike train becomes most likely.

The total spike train log likelihood is given by the sum of the conditional
log likelihoods of individual spike states:

L(�a ) =
m∑

k=1

{
a [k] log P

(
a [k] = 1

∣∣
[k]
)

+(1 − a [k]
)

log P
(
a [k] = 0

∣∣
[k]
)}

,

where m is the length of the spike train (in time steps). The firing prob-
ability, P(a [k] = 1 | 
[k]), is calculated according to equation 3.5, and the
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Figure 8: Scatter plot of predicted versus empirical firing probability of an affer-
ent spike train (baseline activity) obtained from a weakly electric fish (Apterono-
tus leptorhynchus). The duration of the spike train was 275.2 s, and there were
95,027 spikes at a mean firing rate of 345 Hz ( fE OD = 970 Hz). System parameters
were obtained by maximizing the spike train likelihood using a gradient-ascent
algorithm (see appendix C for details). The parameter values were α = 2.6905,
β = 0.5062, η = 1.54, and σ = 0.199. This fit yielded the parameter set used for
the comparison in Figure 3.

probability of the complementary event a [k] = 0 is simply

P
(
a [k] = 0

∣∣
[k]
) = 1 − P

(
a [k] = 1

∣∣
[k]
)
.

For the gradient ascent, one has to calculate the partial derivative of L with
respect to each parameter in order to obtain the increments of the update
equations (details are provided in appendix C).

Figure 8 shows a scatter plot of the empirical firing probability versus
its predicted value. Ideally, if the predictions were exact, all points would
be on a diagonal. However, due to the finite bin size and length of the
spike train, this is never the case. Interestingly, the tracking of the firing
rate seems to work quite well provided that the parameters are chosen
appropriately. There are only minor systematic errors in the data fit. Such
good adaptation of the model system to a natural spike train is somewhat
surprising, considering that the predictor system is not a biophysically
detailed model and has but four free parameters. Additional confirmation
that the obtained parameter set is indeed meaningful is provided by the
closely matching ISI statistics of model and data, as shown in Figure 3.
Note that the parameter optimization was not designed to fit the model’s
ISI histograms or serial correlation coefficient to the afferent spike train.
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3.8 Synopsis and Biological Plausibility. In summary, the correlation-
sensitive detection algorithm involves the following steps:

1. Establishing a match between the synaptic dynamics of short-term
plasticity (see equation 3.13) and the adaptation dynamics of the
presynaptic spike-generating mechanism (see equation 3.4).

2. An initialization of a synaptic state variable 
 and its subsequent
temporal evolution (see equation 3.13)

3. A smooth, nonlinear transformation between the time-varying state
variable 
 and the time-varying synaptic weight w and bias b (see
equation 3.12, and Figure 5)

4. A summation of time-varying bias terms (bi terms in equation 3.12)

5. A summation of weighted spike inputs (wi terms in equation 3.12)

6. Temporal integration of the weighted sum and comparison with a
threshold level (equation 1.2)

Steps 1 to 3 apply to each individual synapse, and steps 4 to 6 apply to
the sum over all synapses that occurs at the postsynaptic detector neuron.
The biological plausibility of carrying out log-likelihood-type computations
using the integrate-and-fire dynamics associated with steps 5 and 6 has
been established previously (Gold & Shadlen, 2001). Here we discuss the
plausibility of the initial steps, 1 to 4, which are associated with the proposed
short-term plasticity mechanism.

Step 1: To the extent that the afferent population has homogeneous
adaptation dynamics, a match between the synaptic dynamics of short-
term plasticity and the adaptation dynamics of the input spike trains could
be hard-wired into the system through an evolutionary process of variation
and natural selection. In this scenario, the adaptation dynamics giving rise
to ISI correlations in the input spike train would likely evolve first because
even a detector with static weights can benefit passively from the reduced
spike count variability (Ratnam & Nelson, 2000; Chacron et al., 2001; Goense
& Ratnam, 2003). Further improvements in detection performance, and
hence a selective advantage, would be afforded to individuals with geneti-
cally specified synaptic dynamics that were more closely matched to those
of the spike-generating mechanism. An afferent population that exhibited
heterogeneity in adaptation dynamics would presumably require some sort
of online or developmental tuning of individual synapses in order to take
advantage of the proposed mechanism.

Step 2: As discussed in section 3.5 and appendices A and B, the dynam-
ical system associated with state prediction (see equation 3.13) robustly
converges toward a trajectory that yields accurate estimates of firing prob-
ability, independent of state initialization or slight variations in parameter
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values. The robust convergence properties should carry over into any bio-
logical implementation with similar underlying dynamics.

Step 3: The transformations between state estimates 
 and synaptic
weights w and biases b are analytically complex (see equation 3.12), but are
smoothly varying, weakly nonlinear functions, as illustrated in Figure 5.
Such nonlinear relationships could be established by a variety of biological
mechanisms associated with calcium signaling and transmitter release at
the synapse.

Step 4: In addition to a synaptic weight wi , the application of statistical
detection theory predicts an associated bias bi for each synapse. When the
input is a renewal spike train, these bias terms are constant (see equation
2.6) and can be absorbed into a redefinition of the threshold γ associated
with the detection process (see equation 1.1). When the spike trains have
ISI correlations, the individual synaptic biases bi become time-dependent
(see equation 3.12). If the detector neuron receives a large number of inde-
pendent afferent inputs, n, the sum of the biases b(t) =∑n

i=1 bi (t) will have
a variance that decreases linearly with n, according to the central limit theo-
rem. Thus, when the degree of afferent convergence is large, the bias term is
approximately constant and can once again be absorbed into a redefinition
of the detection threshold γ , as was the case for renewal process inputs.

Thus, we see that all the elements of the proposed model are plausible
under certain biologically relevant circumstances (e.g., multiple converging
afferents with homogeneous adaptation dynamics). The model could also
be applicable to more challenging circumstances (e.g., a small number of
converging afferents with heterogeneous dynamics), but would require
the specification of additional mechanisms for tuning the dynamics and
accommodating time-varying threshold levels in the detection process.

3.9 The Electrosensory Image Model. We model a patch of fish skin as a
segment of a cylindrical surface. Let n be the number of receptors contained
in the skin patch and i be an index referencing individual receptors (afferent
fibers). Let (r0, φi , xi ) be the position of the ith receptor organ in cylindri-
cal coordinates and (r, φ, x) be the (unknown) target position. The signal
intensity at the ith receptor is modeled as a two-dimensional gaussian:

si = A exp
{

− (xi − x)2/2σ 2
s︸ ︷︷ ︸

main axis

− r2
0 (φi − φ)2/2σ 2

s︸ ︷︷ ︸
polar angle

}
, (3.13)

where A is the signal amplitude, r0 the radius of curvature of the patch,
and σs characterizes the width of the electrosensory image. Both the am-
plitude A and the stimulus width σs depend on the target distance r .
Within a distance of a few centimeters, the amplitude follows a power law
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(Rasnow, 1996):

A(r ) = ker−α. (3.14)

The factor ke incorporates the fish’s electric field strength, as well as the
conductivity of the target object. For the exponent of the power law, a value
of α ≈ 4 has been observed in Apteronotus albifrons (Chen, House, Krahe,
& Nelson, 2005). The steep power law limits the effective range for prey
detection to a few centimeters (MacIver, Sharabash, & Nelson, 2001). For
small targets, the width σs is approximately proportional to the distance of
the target from the skin (Rasnow, 1996):

σs(r ) ∝ r − r0.

The constant of proportionality is approximately unity, so we set

σs(r ) = r − r0. (3.15)

Inserting equations 3.14 and 3.15 into 3.13 yields the intensity of the elec-
trosensory stimulus at any receptor position (r0, φi , xi ) as a function of target
coordinates (r, φ, x):

si = ker−α exp

{
−r2

0 (φi − φ)2 − (xi − x)2

2(r − r0)2

}
. (3.16)

3.10 Performance Comparison. In our simulation of electrosensory sig-
nal detection, we have restricted our analysis to a proof of principle using
only stimuli with instantaneous onset and constant intensity. Optimal de-
tection of time-varying signals would require a temporal receptive field
matched to the expected time course of typical stimuli. In the electrosen-
sory system of weakly electric fish, there is evidence that such expectations
are relayed via feedback from higher brain areas (Maler & Berman, 1999;
Bastian, 1999; Lewis & Maler, 2002). Such top-down information could be
included in the likelihood ratio framework, but is beyond the scope of this
article.

We performed computer simulations of a single detector “neuron” mon-
itoring a 15 × 15 array of receptors. The stimulus was centered on the re-
ceptor array and thus the receptive field of the detector. Using the natural
time discretization provided by the periodicity of the fish’s electric organ
discharge (EOD) and assuming an EOD frequency of 1000 Hz resulted in a
step size of �t = 1/ fEOD = 1 ms.

In order to assess the influence of ISI correlations on detection perfor-
mance, we generated renewal spike trains using the probability encoder
model described in section 2 and nonrenewal spike trains using the more
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realistic nonlinear adaptive threshold model introduced in section 3.2. The
parameters of both spike generators were adjusted, so that equal stimulus
amplitudes resulted in the same increase in firing rate above equal base-
line activities. We used a gain of ≈ 250 spikes/s/mV, in accordance with
experimental observation (Nelson, Xu, & Payne, 1997).

To make meaningful comparisons, the mean false alarm rates of the two
detectors were matched. The thresholds of both detectors were set to obtain
a mean false alarm interval of 95 ms, which corresponds to a false alarm
rate of approximately 10 Hz, similar to typical spontaneous firing rates of
ELL neurons (Bastian & Nguyenkim, 2001).

At the beginning of each trial, the cumulative likelihood ratio was set
to zero. After 50 time steps, a gaussian electrosensory image according to
equation 3.15 was presented and the time counter started. The time interval
before stimulus onset allowed for transients in the afferent spike generators
to decay and ensured sufficient convergence of synaptic predictors. The
value of 50 time steps was determined empirically (see Figure 6). The de-
tection delay is then the time from stimulus onset to the first postsynaptic
spike (detector decision in favor of hypothesis H1). The same procedure
was performed with zero signal amplitude in order to test the detector’s
behavior for pure baseline input. The detection delay is then the time from
the timer reset to the first false alarm.

3.10.1 Distributions of Detection Delay. To demonstrate the advantage
of a dynamic detector, we analyze the distribution of detection delays.
Figure 9 shows delay histograms for both detector types, with and without
a stimulus. Under baseline conditions, the histograms for both detectors
are virtually identical. However, in the presence of a stimulus, the dynamic
detector, Figure 9C, exhibits a smaller coefficient of variation than the static
detector, Figure 9D, and has more probability mass concentrated at shorter
delay times.

There is no difference in mean detection delay between the two detector
types, since false alarm rates are equal and the static detector is adjusted
to match the mean afferent firing rates. Although the static detector cannot
track the afferent firing probability, its estimate is correct on average.

3.10.2 Detection Probability as a Function of Integration Time. Integrating
the delay distributions over time, that is, summing the counts of all his-
togram bins in Figures 9C and 9D up to a given delay time and normalizing
by the total count, yields the “hit probability” as a function of integration
time. This includes correct detections and false alarms. Integrating the base-
line histograms, Figures 9A and 9B, over the same desired time window
yields the probability of false alarm, which must be subtracted from the hit
probability to obtain the probability of correct detection.

Figure 10 shows a plot of the probability of correct detection as a function
of integration time for three situations: (1) dynamic detector with correlated
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Figure 9: Distributions of the detection delay for both detectors under baseline
and signal condition. Histograms were obtained for the static and the dynamic
detector, both of which received correlated input. Thresholds were chosen so
that false alarm rates were equal. Therefore, the mean detection delay (dashed
lines) under baseline conditions is the same in both detectors (A and B). In the
presence of a stimulus, the mean detection delay is still the same, but the dynamic
detector (C) has more probability mass concentrated at shorter delay times and
exhibits a smaller coefficient of variation (CV) than the static detector (D).

input, (2) static detector with correlated input, and (3) static detector with
renewal input. (The histograms for the third case are not shown in Figure 9.)

In addition to the expected beneficial effect of reduced spike count vari-
ability in the correlated firing, the dynamic detector is able to exploit the
higher degree of predictability of afferent spike events due to temporal cor-
relations. Consequently, the same detection probability is reached within a
shorter integration time. Interestingly, the optimal integration time for the
dynamic detector, which is about 15 ms, matches typical values of mem-
brane time constants observed in the ELL of weakly electric fish (Berman &
Maler, 1998). Thus, the model suggests a biologically plausible integration
timescale, even though it has no leak term.
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Figure 10: Detection probability as a function of integration time for a given,
fixed signal intensity. The static detector with uncorrelated input spike train
statistics (dashed curve) performs poorly, requiring at least 70 ms to reach a
maximum of only 30%. Fed with a negatively correlated spike train, the de-
tection performance improves significantly (dash-dotted curve). The dynamic
detector (solid curve) requires a shorter integration time to reach the same de-
tection probability. In all three simulations, the false alarm rate is kept at the
same level. The signal intensity is equivalent to that caused by a small prey-like
object at a typical detection distance of about 2 cm.

Moreover, the synaptic plasticity transforms the inherent redundancy in
the presynaptic spike trains into a reduced variability of the postsynaptic
spike output, indicated by a smaller coefficient of variation in the detection
delay. Such a reduction in firing variability is a well-known consequence of
short-term synaptic depression (Abbott & Regehr, 2004).

A population of such detector neurons would be more likely to fire within
a small time interval than an equivalent population of static detectors. A
neuron in a higher brain area, receiving input from a population of neurons
with dynamic synaptic weights, could act as a coincidence detector and,
due to the more precise firing of its input, the time window of coincidence
could be tighter, resulting in a more efficient rejection of false alarms.

4 Discussion

There is ample evidence of activity-dependent synaptic conductances vary-
ing on timescales comparable to the interspike interval of their presynaptic
input (Zucker & Regehr, 2002; Xu-Friedman & Regehr, 2004). Hence, the
question of the functional significance of such plasticity arises. Our pri-
mary focus has been the interplay between short-term synaptic plasticity
and presynaptic input spike trains with correlated ISIs and its role in weak
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signal detection. While it has been suggested that depressive synapses can
achieve decorrelation (“whitening”) of positively correlated spike trains
(Goldman, Maldonado, & Abbott, 2002), the same synaptic mechanism
would have the opposite effect in the presence of negative correlations.
Instead of decorrelating, short-term synaptic depression would preserve
the negative correlations. The combination of facilitating and depressing
plasticity in our dynamic detector model enables the postsynaptic neuron
to differentiate between expected and unexpected spikes by exploiting the
inherent redundancy in its correlated presynaptic input.

The predictive synaptic plasticity introduced in this article is a novel
mechanism that goes beyond previous models of weak signal detection in
spike trains with correlated ISIs (Ratnam & Nelson, 2000; Chacron et al.,
2001; Goense & Ratnam, 2003). In all of these approaches the emphasis is
on the long-term regularization (i.e., on a timescale of multiple ISIs) rather
than short-term predictability of spike trains. While the framework of sta-
tistical detection theory lends itself very well to weak signal detection in
correlated spike trains, an explicit representation of conditional spiking
probabilities would seem biologically implausible. As a history-dependent
process, short-term synaptic plasticity offers a way to address the computa-
tional challenge of spike forecasting by implicitly representing conditional
firing probabilities. Though most of the increase in detection performance
compared to a renewal input stems from long-term regularization, there
is also a modest, but significant, benefit in exploiting the statistical depen-
dence of ISIs via synaptic plasticity.

The apparent similarity between neuron models with spike-driven
threshold adaptation and short-term synaptic depression has been noted
by Chacron and colleagues (Chacron et al., 2003), though the authors cau-
tion that for electrosensory afferents, the required time constant of neu-
rotransmitter recovery would have to be significantly shorter than those
typically found in cortical neurons. However, the improvement of detec-
tion performance in our dynamic detector model raises the question of
whether a neural correlate of such a detector exists. It would be surprising
if electrosensory systems, and perhaps sensory neurons in other modali-
ties, did not in some way actively exploit the correlated nature of afferent
spike trains. We therefore speculate that a rapid form of short-term plas-
ticity in excitatory synapses of postsynaptic (ELL) neurons might be able
to mimic afferent threshold fluctuations, thus enabling the synapses to
track the firing probabilities associated with presynaptic spikes. The un-
usually high firing rates of electrosensory afferents may be matched by
unusually small synaptic time constants unique to sensory neurons in the
ELL.

From a bioengineering point of view, the described form of predictive
synaptic plasticity may also have implications for the design of neuromor-
phic systems or bioelectronic interface technology in sensory prostheses,
where it may be advantageous to precisely match the ISI statistics of a
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sensory device output to the synaptic properties of the cells to which the
device is connected.

Appendix A: The Lyapunov Exponent of the Afferent Model

The stability of threshold orbits is determined by the Lyapunov exponent
of the map that transforms threshold θ [k] into its successor θ [k + 1] (see
equation 3.4):

fk : R −→ R , θ −→ θ − β/α + a [k] β
2e−ηθ

1 + e−ηθ
. (A.1)

The subscript k denotes that the map fk is time dependent. The Lyapunov
exponent of this map is given by (Strogatz, 1994),

λ = lim
n→∞

1
n

n−1∑
k=0

ln
∣∣ f ′

k (θ [k])
∣∣, (A.2)

where the prime indicates the derivative with respect to θ . If the limit in
equation A.2 exists, the absolute difference between actual and predicted
threshold changes exponentially:

∣∣
[k] − θ [k]
∣∣ = ∣∣
[0] − θ [0]

∣∣ eλk .

Consequently, the Lyapunov exponent must be negative (see Figure 6B) in
order to produce stable threshold orbits that the predictor can converge
toward. The time constant of this convergence is

τ = 1
|λ| .

For a positive Lyapunov exponent, even the slightest difference between

[0] and θ [0] would be substantially magnified within a small number of
time steps. Such sensitivity to initial conditions is a characteristic feature of
deterministic chaos. Therefore, it is important to investigate the behavior of
the Lyapunov exponent for different parameter settings in order to avoid
chaotic regimes if they exist.

Apart from special cases, the Lyapunov exponent must be calculated
numerically since no general analytical expression exists. However, it is
relatively easy to assess the dependence of λ on the boost parameter η. The
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derivative of the map fk with respect to θ is given by

f ′
k (θ ) = 1 − 2a [k]β

ηe−ηθ [k][
1 + e−ηθ [k]

]2 . (A.3)

In the special case of constant threshold boost, that is, for η = 0 (see equation
A.1), the expression reduces to

f ′
k ≡ 1 , for all k and all θ .

By inserting this result into equation A.2, one finds that the Lyapunov ex-
ponent is zero, implying an infinite convergence time constant. Obviously,
threshold saturation plays a crucial role in system stability. For instance,
a predictor system based on the simpler linear adaptive threshold model
(Brandman & Nelson, 2002), which lacks a threshold saturation term, does
not possess the convergence property and would require precise knowledge
of the initial value of θ [0] in order to set 
[0] = θ [0].

The remainder of the analysis is based on numerical calculation of the
Lyapunov exponent, approximating equation A.2 by summing over a large
number of time steps (c. 10,000). Since the derivative of the map in equa-
tion A.3 does not depend on α, the Lyapunov exponent is determined by
only two parameters, β and η. This considerably simplifies numerical sta-
bility analysis and enables us to visualize the Lyapunov exponent in the
relevant parameter space. As Figure 11A shows, stable threshold orbits are
guaranteed over a wide parameter range.

Appendix B: Robustness of Threshold Tracking

To test the predictor robustness, we generated artificial spike trains using
the values for the parameters α and β obtained from the gradient ascent fit
with afferent data (see section 3.7.1) and chose slightly deviant values for α̃

and β̃ in the predictor system. Keeping these parameters fixed, we varied
only η and η̃, setting η̃ = η. The overall discrepancy between prediction
Ppred and actual firing probability P was measured in terms of the root mean
square (RMS) deviation,

〈
P − Ppred

〉
rms

=
√〈

(P − Ppred)2
〉 =
√√√√ 1

m

m∑
k=1

(P[k] − Ppred[k])2 ,

where the angular brackets denote the temporal average. Figure 12A shows
the RMS prediction error as a function of η. From this plot, one might
conclude that the fitted parameter value η∗ is quite far from the minimum
and would therefore be a suboptimal choice.
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Figure 11: (Top) The Lyapunov exponent of the map fk in equation A.1 as a
function of the parameters η and β. Over the entire plotted parameter range,
the Lyapunov exponent is negative, indicating stable orbits and the absence of
chaos. (Bottom) Double plot of the Lyapunov exponent (dashed-dotted curve)
and the correlation coefficient of adjacent ISIs (solid curve) as a function of
threshold saturation parameter η. Parameters α and β remain fixed. The dashed
vertical line marks the value η∗, obtained from fitting the model to an electrosen-
sory afferent spike train (see Figure 8). Increasing η lowers the convergence time
constant (i.e., the Lyapunov exponent becomes more negative), while reducing
the degree of negative correlativeness. Thus, the two desirable properties, neg-
ative correlativeness of subsequent ISIs and short convergence time constant,
cannot be optimized simultaneously. Interestingly, when η assumes the value
η∗, obtained from fitting neural data, it realizes a trade-off between the two
quantities.

Intuitively, one expects the robustness against parameter perturbations
to depend on the Lyapunov exponent, which determines the convergence
time constant. If the unperturbed system has a negative Lyapunov expo-
nent, the predictor variable partially self-corrects so that the asymptotic
prediction error is bounded, and thus the sequences (θ [k]) and (
[k]) do
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Figure 12: (Top) The saturation parameter η controls the robustness of the pre-
dictor system against small inaccuracies of its parameter values. The difference
between actual and predicted firing probability, measured in terms of the root
mean square error of the sequences P[k] and Ppred[k], is plotted as a function of
system parameter η. The error stems from the fact that predictor parameters α̃

and β̃ deviated from their counterparts α and β in the spike generator by 1%,
5%, and 10%, respectively. Both systems had the same fixed noise variance. The
spike generator values were α = 2.6905 and β = 0.5062. For the fitted value,
η = η∗, the error is close to 4% for a 1% parameter deviation. For larger de-
viations, the error increases significantly, but the system remains operational.
This graceful degradation is important for parameter learning and supports the
biological plausibility of the model. (Bottom) The root mean square error of
threshold prediction (for 1% parameter deviation) as a function of the magni-
tude of the Lyapunov exponent, |λ|. As predicted in equation B.1, the error scales
with |λ|−1, except for larger values of |λ|, for which the integral approximation
becomes invalid.
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not diverge. The shorter the time constant, the more quickly the perturbed
predictor sequence is drawn back to the original attractor orbit, resulting in
a smaller RMS prediction error.

As shown in Figure 11 bottom, the Lyapunov exponent, and thus the
perturbation robustness, is controlled by the parameter η (dashed curve).
Also plotted is the serial correlation coefficient of adjacent ISIs (lag=1), ρ(1),
defined as

ρ(1) =
〈
(Ik+1 − Ī )(Ik − Ī )

〉
σ 2{I } ,

where Ī and σ 2{I } are the mean and variance of the ISI. Obviously, increas-
ing the robustness (magnitude of negative Lyapunov exponent) reduces
the degree of negative ISI correlation, which would affect detection perfor-
mance. Interestingly, the parameter value η∗ appears to realize a trade-off
between these two desirable properties that cannot be maximized simulta-
neously.

B.1 Prediction Error and Lyapunov Exponent. In order to quantify how
the RMS prediction error depends on the Lyapunov exponent of the thresh-
old map, we consider a small perturbation in the parameter β, denoted by
δβ. Consequently, the predictor variable 
 is transformed via the perturbed
map:


[k] = 
[k − 1] − (β + δβ)
α

+ 2a [k − 1] (β + δβ) g(
[k − 1], η).

Thus, at each time step, the resultant perturbation in 
 is

δ
[k] = −δβ

α
+ 2a [k − 1] δβ g(
[k − 1], η) .

In order to obtain a relation between 
[k] and θ [k], one must consider the
perturbations from previous time steps. All past perturbations have de-
cayed exponentially with time constant 1/|λ|. Consequently, the difference
between threshold and predictor at time k is the sum of all the decayed
previous perturbations:


[k] − θ [k] =
k∑

j=0

δ
[k − j] e−|λ| j .
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For the RMS error, one obtains

√〈
(
[k] − θ [k])2

〉 = √〈(δ
)2
〉 ∞∑

j=0

e−|λ| j .

In the asymptotic limit k → ∞, the summation over exponentials can be
approximated by an integral that is easy to evaluate:

〈

[k] − θ [k]

〉
rms

=
√〈

(δ
)2
〉 ∞∑

j=0

e−|λ| j

≈
√〈

(δ
)2
〉 ∞∫

0

e−|λ|t dt =
〈
δ

〉

rms

|λ| . (B.1)

Hence, the RMS prediction error is expected to scale inverse proportionally
to the Lyapunov exponent. As Figure 12 bottom shows, the theoretical
result is in good agreement with the numerical simulation. Only for larger
magnitudes of the Lyapunov exponent is the power law scaling incorrect. In
this range of λ, the convergence time constant τ = 1/|λ| is of the same order
of magnitude as the length of the time step between iterations, and thus
the rapidly decaying integrand is a poor approximation of the piecewise
constant entries in the summation in equation B.1.

The scaling law for the robustness shows that the predictor parameters do
not have to perfectly match those of the spike generator in order to achieve a
reasonably accurate threshold prediction. To reduce the prediction error, one
would merely have to increase the Lyapunov exponent. However, due to
the trade-off between Lyapunov exponent and serial correlation coefficient,
any increase in robustness would be at the expense of a lower degree of ISI
correlation (see Figure 11 bottom).

Appendix C: Maximum Likelihood Estimation of Parameters by
Gradient Ascent

In this section we describe the gradient-ascent procedure used to estimate
the model parameters α̃, β̃, η̃, and σ̃ that best match a given afferent spike
train. Let the spike train be given as binary vector �a ∈ {0, 1}m of length m.
This format is obtained by re-sampling the original afferent recording at the
EOD frequency, since the afferents never produce more than one spike per
cycle of the oscillating field. The spike train log likelihood is the sum of the
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conditional log likelihoods of the individual spike events:

L(�a ) =
m∑

k=1

{
a [k] log P

(
a [k] = 1

∣∣
[k]
)

+ (1 − a [k]
)

log P
(
a [k] = 0

∣∣
[k]
)}

.

To make equations more compact, we introduce the following shorthand
notation for the conditional firing probability:

P[k] := P
(
a [k] = 1 | 
[k]

)
.

Thus, the spike train likelihood function is written as

L(�a ) =
m∑

k=1

{a [k] log P[k] + (1 − a [k]) log(1 − P[k])}. (C.1)

Note that P[k] contains an account of the entire spike train history, since it
is a function of 
[k] and hence indirectly a function of all previous thresh-
old values 
[k − 1],
[k − 2], . . . , 
[0]. By virtue of equation 3.5, the firing
probability of a baseline spike train is obtained by setting the stimulus
intensity to zero (s[k[≡ 0). Hence,

P[k] = 1
2

erfc
(


[k]√
2σ

)
. (C.2)

In order to find the parameter values that maximize the likelihood function,
we employ a gradient-ascent algorithm. At each iteration, the current pa-
rameters are updated by adding a fraction of the gradient of the likelihood
function:(

α̃, β̃, η̃, σ̃
)

n+1 = (α̃, β̃, η̃, σ̃
)

n + l ∇α̃,β̃,η̃,σ̃ L,

where l is the (heuristically determined) learning rate and the gradient is

∇α̃,β̃,η̃,σ̃ =
(

∂

∂α̃
,

∂

∂β̃
,

∂

∂η̃
,

∂

∂σ̃

)
. (C.3)

Using equation C.1, we obtain the gradient of the likelihood function:

∇α̃,β̃,η̃,σ̃ L=
m∑

k=1

{
a [k]

∇α̃,β̃,η̃,σ̃ P[k]
P[k]

− (1 − a [k])
∇α̃,β̃,η̃,σ̃ P[k]

1 − P[k]

}

=
m∑

k=1

[
a [k]
P[k]

− 1 − a [k]
1 − P[k]

]
∇α̃,β̃,η̃,σ̃ P[k]. (C.4)
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Hence, one has to calculate the partial derivatives of the firing probability,
equation C.2. For σ̃ , this is straightforward:

∂ P[k]
∂σ̃

= 
[k]√
2πσ 2

exp
(−
[k]2

2σ 2

)
. (C.5)

However, with the exception of σ̃ , P[k] is not an explicit function of the
parameters. Therefore, the partial derivatives with respect to α̃, β̃, and η̃

have to be obtained via the chain rule:

∇α̃,β̃,η̃ P[k] = d P[k]
d
[k]

∇α̃,β̃,η̃ 
[k] . (C.6)

Differentiating equation C.2 yields

d P[k]
d
[k]

= − 1

σ
√

2π
exp

(−
[k]2

2σ 2

)
. (C.7)

To evaluate the gradient of 
[k], one must take into account that 
[k] is the
result of k-fold iteration of the map (see appendix A):

fk : R −→ R , 
 −→ 
 − β/α + a [k] β
2e−η


1 + e−η

.

Hence, one can write

∂
[k]
∂α̃

= ∂

∂α̃
f k(
[0]) =

k−1∏
j=0

∂

∂α̃
f (
, α̃)∣∣∣


=
[ j]

.

This yields

∂

∂α̃
f (
, α̃) = β̃

α̃2 ⇒ ∂
[k]
∂α̃

=
(

β̃

α̃2

)k

.

Together with equation C.7, one obtains

∂ P[k]
∂α̃

= − 1

σ
√

2π

(
β̃

α̃2

)k

exp
(−
[k]2

2σ 2

)
. (C.8)

In a similar manner, one can calculate the partial derivatives of P[k] with
respect to β̃ and η̃. Inserting the expressions for the partial derivatives of P[k]
into equation C.4 yields the components of the gradient of the likelihood
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function:

∂L
∂α̃

=
m∑

k=1

Q[k]
(

β̃

α̃2

)k

, (C.9)

∂L
∂β̃

=
m∑

k=1

Q[k]
k−1∏
j=0

(
− 1

α̃
+ a [ j]

[
1 − 1

1 + exp(−η
[ j])

])
(C.10)

∂L
∂η̃

= −
m∑

k=1

Q[k]β̃k
k−1∏
j=0

a [ j]
[ j] exp(−η
[ j])[
1 + exp(−η
[ j])

]2 , (C.11)

∂L
∂σ̃

= − 1
σ

m∑
k=1

Q[k] 
[k], (C.12)

where

Q[k] = − 1

σ
√

2π
exp

(−
[k]2

2σ 2

)[
a [k]
P[k]

− 1 − a [k]
1 − P[k]

]
. (C.13)
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