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Abstract

The detection of weak sensory signals is an important aspect of neuronal information pro-
cessing. Behaviorally relevant signals are often encoded as perturbations of on-going spiking
activity in primary a/erents. Here, we show that a biologically plausible model, the leaky
integrate-and-�re (LIAF) neuron, is capable of e5cient and reliable detection of a single spike
added to baseline activity. Detection performance is dependent on the statistical properties of the
spike train. For the type of statistics considered here, an LIAF neuron can distinguish between a
correct detection by means of burst �ring, whereas false alarms tend to result in isolated spikes.
The methods are illustrated by an application to electrosensory a/erents of weakly electric �sh.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The sensory environment of an animal is in a state of constant ;ux. Behaviorally
relevant signals often appear at unknown times and may be so weak that they are
obscured by irrelevant background activity. The task of higher-order neurons is to �lter
out the irrelevant information and extract what can be a weak but relevant signal. This
has to be done in real time, i.e., on the basis of a continuous online examination of the

∗ Corresponding author. Beckman Institute for Advanced Science and Technology, University of Illinois,
405 N. Mathews, Urbana, IL 61801, USA.
E-mail address: m-nelson@uiuc.edu (M.-E. Nelson).

0925-2312/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0925-2312(02)00814-7

mailto:m-nelson@uiuc.edu


104 J.B.M. Goense et al. / Neurocomputing 52–54 (2003) 103–108

incoming spiking activity. The traditional framework for signal detection is trial-based
testing employing spike count windows and a binary hypothesis test [4]. This requires
repeated sampling in order to make a decision and is not suitable for online detection.
In a companion study [8], we show that the performance of a model neuron, the leaky

integrate-and-�re neuron (LIAF), can approach that of a theoretically optimal online
signal processing algorithm (the CUSUM algorithm) for detecting an abrupt, sustained
shift in the interspike interval (ISI) distribution. Here we explore the performance of
the LIAF neuron for detecting weak, transient changes in spike activity. We show
that the statistical structure of the spike train can enhance the detection performance
by indicating the presence of a signal with a burst of activity, whereas a false alarm
(false positive) results in isolated spiking events spaced relatively far apart in time. We
apply these methods to the detection of weak signals in noisy electrosensory a/erents
of weakly electric �sh [2,7].

2. Methods

Extracellular recordings of baseline (spontaneous) P-type a/erent activity were made
from a/erents of Apteronotus albifrons (black ghost knife �sh). The experimental
procedures are described in Xu et al. [9]. A. albifrons has a stable and precise EOD
with a fundamental frequency that ranges from 1000 to 1400 Hz. Neurons �re at most
one spike per EOD period, on an average once every three periods, making the EOD
frequency a convenient sampling rate. Spike trains were thus discretized and represented
as a string of 1’s and 0’s according to whether a spike was observed in an EOD period
(see [7]). Recorded spike trains ranged from 200 to 450 s in duration. The baseline
spike trains formed the “noise” data set for this study.
A weak signal was modeled by the random addition of a spike to the baseline data.

The perturbed spike train was considered the “signal + noise” data set. To detect the
added spike, the spike train was �ltered using a leaky integrator, which simulates the
LIAF neuron (Fig. 1). The integrator output was continuously compared to a �xed
threshold. If a threshold crossing (hit) occurred, it was scored as a detection if the hit
occurred within a time window (the signal window) following the added spike. The
duration of the signal window was set to the time constant T of the leaky integrator.
Detection probability (Pd) was computed by dividing the number of detections by the
number of added spikes. If the hit did not occur within the signal window it was
considered a false alarm. False alarm rates were computed from the baseline data set
by dividing the number of false alarms by the duration of the recorded spike train.
By testing over a range of thresholds an operating characteristic (OC) curve can be
constructed, showing the false alarm rate versus the detection probability Pd. After the
threshold crossing, the integrator input can be reset to zero, which will result in an
absolute and relative refractory period. If the integrator is reset to zero, this has the
e/ect that for a time of the order of the time constant, no new hits are likely. Reset
to other values is also possible [1,5]. The extreme case occurs when the integrator is
not reset after a hit. Both cases were tested in this study to determine the e/ect on
detection performance.
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Fig. 1. An LIAF neuron can function as a signal detector. (A) Baseline spike train (left panel) is �ltered
by a leaky integrator (right). A threshold crossing (dashed line) results in an output spike, and the LIAF
neuron is reset to the mean value of the input (dotted line). In this case, output spikes are false alarms
and represent spontaneous �ring of the LIAF detector. (B) A signal spike is added at an arbitrary location
(triangle) to the baseline spike train (left panel); the task for the LIAF neuron is to detect the presence of
this added spike. The LIAF neuron (right) generates an output spike within a few milliseconds of the added
input spike (compare right panels in A and B). This particular output spike represents a correct detection.

Detections with partial resets generate burst-like activity in the LIAF neuron. We
de�ned a burst as the presence of more than one hit within a time constant T of the
leaky integrator. We evaluated the performance by considering only bursts of hits, i.e.,
single hits were ignored, and calculated the detection probabilities as a function of
false alarm rate.

3. Results

In a simulated detection task, a P-type a/erent spike train was perturbed by the
addition of one spike at an arbitrary location. The goal of the detector was to de-
termine online the presence of this added spike. Since such detection is presumably
carried out at the next higher level of processing in the brainstem, the electrosensory
lateral line lobe (ELL), we consider the IAF model to represent a neuron (pyramidal
cell) in the ELL. Fig. 2 shows the signal detection performance of an IAF neuron
with input a P-type a/erent spike train (mean baseline �ring rate for the unit shown
is 449 ± 3:4 Hz; EOD = 1061 Hz). Spike trains from the P-type unit were �ltered
using a leaky integrator with time constant T = 10 EOD cycles (about 10 ms) and
passed through a threshold element to generate spikes. The mean �ring rate of the
output (ELL) unit was adjusted by varying its threshold. In the absence of a signal
in the input spike train, we call this the false alarm rate (see Fig. 2A). Detection
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Fig. 2. Performance characterization of an LIAF as a detector. (A) False alarm rate versus threshold level
of the LIAF model. (B) OC curve shows the probability of correct detection as a function of false alarm
rate, when a single spike is added to an a/erent spike train of A. albifrons. The detection probability for
small false alarm rates (¡ 1 Hz) is nearly 1, indicating that these neurons are extremely reliable detectors.
The reset value of the integrator makes little di/erence (circles: reset to 0; lozenge: no reset).

performance of the IAF neuron was quanti�ed using an operating characteristic (OC)
curve (Fig. 2B), which measures detection probability as a function of the false alarm
rate. It can be seen that the hypothetical ELL unit has near-ideal detection performance
(Pd = 1) even for low false alarm rates (about 1 Hz).
To determine the e/ect of resetting the integrator, we measured detection perfor-

mance by changing the reset value. This is shown in Fig. 2B for two extreme values:
complete reset to 0 after �ring (circles) and no reset (lozenge). The reset value a/ects
signal detection ability only at high false alarm rates, but for the rates shown here
(¡ 10 Hz) it does not make much di/erence on the performance of the IAF unit. It
should be noted that a good detector aims for a high probability of detection (=1)
while keeping its false alarm rate as small as possible. For the unit shown in Fig. 2,
the added spike can be detected easily with very high reliability and very low false
alarm rate. Almost all units performed at comparable levels.
Raising the threshold level to reduce the false alarm rate has the undesirable e/ect

of simultaneously lowering the detection probability (Fig. 2). One way to overcome
this problem is to use bursting activity to distinguish between true detections and false
alarms. This is illustrated in Fig. 3 by employing partial integrator resets (to illustrate,
we consider the case of no reset). In Fig. 3A, it can be seen that for reasonably
low thresholds, the number of multiple hits (i.e., bursts, lozenge) forms a signi�cant
proportion of the total number of detections (circles). However, at such low thresholds,
the false alarm rate is high (see Fig. 2). On the other hand, the number of bursts during
a false alarm are uniformly low over a wide range of false alarm rates (Fig. 3B, �lled
symbols). If we were to calculate performance based on all hits (single spikes or
bursts), then at a threshold of 5.22 (false alarm rate of 9:3 Hz, Fig. 2A) the detection
probability is almost 1 (Fig. 3A, circles). If only bursts are accepted, then the detection
probability is only marginally lowered to 0.98 (Fig. 3A, lozenge), whereas the false
alarm rate drops by a factor of 6–1:5 Hz (Fig. 3B). Thus, bursts provide a convenient
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Fig. 3. Bursting activity is a reliable indicator of the presence of a weak signal. (A) Detection probability
versus threshold, showing the total number of detections (circles) when there is no integrator reset. This is
further partitioned into probabilities of single hits (squares) and bursts of hits (lozenge). (B) Fraction of
single hits (squares) and bursts (lozenge) for detections (open symbols) and false alarms (closed symbols).
The proportion of bursts during false alarms is signi�cantly lower than single hit false alarms, whereas for
detections, the opposite is true for a wide range of thresholds. This indicates that bursts are reliable indicators
of a true hit, whereas false alarms are more likely to be single hits.

way to distinguish between correct detections and false alarms with a large increase in
performance.

4. Discussion

This main �ndings of this work are that: (1) a simple leaky integrator with a thresh-
old mechanism can function as an e5cient online detector and (2) high false alarm
rates are acceptable if correct detections occur in small bursts of spikes whereas false
alarms occur as isolated spikes. In this case, isolated hits can be ignored with little
penalty on detection performance. Gabbiani et al. [3] and Metzner et al. [6] showed
that bursts of ELL neurons encode more features than isolated spikes and carry more
useful information. Our �nding from the viewpoint of signal detection also supports
this.
The principal mechanism by which detections trigger bursts, whereas false alarms

generate only isolated spikes, is based on the strong anti-correlations between adjacent
ISIs in the baseline spike train [7]. Brie;y, anti-correlations provide a �ring rate stabi-
lizing mechanism whereby ;uctuations away from the mean rate are strongly resisted.
Thus, a threshold crossing is brief with a quick return to mean �ring rate. This tends to
generate isolated spikes. On the other hand, adding a signal elevates the overall �ring
rate and so threshold crossings persist for longer duration, thus generating bursts.
Weak signals at the limit of sensory threshold may cause barely noticeable changes

in the baseline �ring activity of a neuron. To counter this, selection pressure may have
evolved mechanisms to enhance detection performance. Among such mechanisms may
be rate stabilization by anti-correlated ISIs, and consequently, the presence of burst-
ing activity to emphasize presence of a signal. Since the nervous system processes
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information in stages, a hierarchy of neurons can successively �lter information and
re�ne the decision-making scheme, and thereby achieve very high detection perfor-
mance.
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