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Abstract An important problem in sensory processing is
deciding whether fluctuating neural activity encodes a
stimulus or is due to variability in baseline activity.
Neurons that subserve detection must examine incoming
spike trains continuously, and quickly and reliably
differentiate signals from baseline activity. Here we
demonstrate that a neural integrator can perform con-
tinuous signal detection, with performance exceeding
that of trial-based procedures, where spike counts in
signal- and baseline windows are compared. The pro-
cedure was applied to data from electrosensory afferents
of weakly electric fish (Apteronotus leptorhynchus),
where weak perturbations generated by small prey add
~1 spike to a baseline of ~300 spikes s~'. The hypo-
thetical postsynaptic neuron, modeling an electrosensory
lateral line lobe cell, could detect an added spike within
10-15 ms, achieving near ideal detection performance
(80-95%) at false alarm rates of 1-2 Hz, while trial-
based testing resulted in only 30-35% correct detections
at that false alarm rate. The performance improvement
was due to anti-correlations in the afferent spike train,
which reduced both the amplitude and duration of
fluctuations in postsynaptic membrane activity, and so
decreased the number of false alarms. Anti-correlations
can be exploited to improve detection performance only
if there is memory of prior decisions.
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Introduction

Animals encounter a continuous stream of sensory
information, which consists of both relevant and irrele-
vant information. From this stream of information they
have to detect, extract and attend to the relevant infor-
mation quickly and reliably. Here we focus on the
detection task. This task is challenging because the
stimulus must be detected in the presence of ongoing
background activity, while neither the onset nor the
properties of the stimulus are known. The problem is
multiplied when considering the neural representation of
stimuli. Weak but important signals tend to be obscured
in a mix of irrelevant information from both the envi-
ronment and intrinsic neural noise. The neural process-
ing of sensory data may involve circuits that incorporate
some form of online hypothesis testing to detect signals
of relevance on a continuous basis. Physiological
mechanisms for the continuous testing of hypotheses at
the single neuron level are currently unknown, although
there is some evidence linking single neuron activity to
decision making (Kim and Shadlen 1999; Gold and
Shadlen 2001). Here, we address the issue of signal
detection in the weakly electric fish Apteronotus
leptorhynchus (brown ghost knife fish). Based on the
afferent input to the electrosensory lateral line lobe
(ELL), we examine how a continuous detector located in
the ELL may detect small changes in the afferent spike
train.
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The electric fish’s self-generated electric organ dis-
charge (EOD) is modulated by objects that differ in
electrical impedance from the surrounding water, which
provides sensory cues that allow the fish to navigate and
hunt in the dark (review: Bullock and Heiligenberg
1986). Probability coding, or P-type electrosensory
afferents, that maintain a baseline activity of ~300 spi-
kes s™' in the presence of undisturbed EOD, respond to
the modulations by increasing or decreasing their
probability of firing. Based on studies of prey capture
behavior, Nelson and Maclver (1999) estimated that at
the time of detecting a prey, the transient modulation in
P-type afferent activity is about 1%. This adds about
one extra spike to the total of 60 spikes expected in the
time taken for the prey to sweep across the afferent’s
receptive field (~200 ms). Such a weak signal can be
difficult to detect given the intrinsic fluctuations in the
spike count (Ratnam and Nelson 2000). Using a trial-
based ideal observer scheme, Ratnam and Nelson (2000)
showed that if only spike counts were used, then 2-3
extra spikes could be detected with 90% probability in a
100-ms window. While the results do not fully explain
the predicted performance, they noted that the high
degree of regularity of the P-type afferent improved
detection performance, since for renewal (Poisson type)
spike trains the detection probability was only 10-15%.
The regularity is due to anti-correlations in the inters-
pike interval sequence that serve to reduce the variability
of the spike count distribution over long counting win-
dows (Ratnam and Nelson 2000; Chacron et al. 2001).
However, a trial-based approach does not explicitly
utilize the information contained in the temporal se-
quence of spikes, because only the first-order statistics
[mean and standard deviation (SD) of the spike count]
are used, and not the correlation structure of the
sequence. The anti-correlation structure of the spike
train (second-order statistics) may provide additional
information that can be used to improve detection per-
formance. In particular, neurons in the ELL, that receive
input from P-type afferents, may exploit such informa-
tion, and so better approach the performance suggested
by behavior.

Here we present a continuous detection procedure
that that is able to exploit the anti-correlations in the
input spike train, and can serve as a model for a detec-
tion strategy that may be employed by the ELL. This
procedure is based on sequential testing (Wald 1947)
and marks a radical departure from fixed-sample or
trial-based testing using, for instance, a post-stimulus
time histogram (PSTH). It models the well-known
properties of neural integration of excitatory postsyn-
aptic potentials (EPSPs), and spike generation when the
membrane voltage reaches a threshold. We assume that
a detector neuron continuously performs a binary
hypothesis test on the summed EPSPs. At every time
instant the neuron decides whether the summed EPSP
reflects unchanging background spiking activity in the
presynaptic neuron or whether there was a signal
embedded in it. Unlike trial-based testing, where the

beginning and duration of the testing interval are pre-
determined, in sequential testing the neuron continually
tests the EPSPs, and terminates only when it determines
that a signal was present. At this point, it generates a
spike, signaling a hit. We show that because the input is
continuously evaluated, as opposed to the evaluation of
a single time interval in trial-based testing, the neuron
can utilize memory of prior activity to improve the
reliability of decision-making. Further, continuous test-
ing requires a smaller sample size than trial-based pro-
cedures (see Wald 1947; Siegmund 1985), so the speed of
decision-making is optimized.

We consider the baseline (spontaneous) activity of a
sensory afferent fiber in the weakly electric fish, and
perturb it at a random point in time by inserting a spike
or by shortening an interspike interval (ISI). The coding
of a stimulus with a single or few spikes and its detec-
tion, has been studied in several systems using spike
counting or trial-based testing (reviews: Rieke et al.
1997; Parker and Newsome 1998; see also Fitzhugh
1957; Barlow et al. 1971; Relkin and Pelli 1987; Lee et al.
1993; Vallbo 1995; Tougaard 1999). In most cases
however, the background rates are relatively low, which
facilitates the detection task. It becomes considerably
more difficult when the signal-to-noise ratio (SNR) is
low, due to small changes in spiking activity and high
background rates. Here, we address the task of detecting
a small transient perturbation in the presence of signif-
icant background spiking activity, without the benefit of
repeated trials, or knowledge of the time of occurrence.
The main findings are: (1) a simple physiologically
plausible neuron (the leaky integrator) can perform
reliable signal detection on a continuous basis. The leaky
integrator is used to illustrate the concepts, because of its
simplicity, and because it is a common model of neural
membrane activity, but more accurate models can also
be used. (2) The performance of this detector is deter-
mined to a large extent by the statistical properties of the
baseline spiking activity. Neural spiking activity is often
modeled as a renewal process (e.g., a Poisson or Gamma
process), and for such spike trains detection perfor-
mance is relatively poor. However, the presence of
negative correlations (anti-correlations) between adja-
cent ISIs as observed in the P-type afferent spike trains
results in a dramatic improvement in the detectability of
weak signals. In a negatively correlated spike train, the
duration of a given ISI depends on the preceding ISI,
such that long ISIs are followed by short ISIs and vice
versa (see Figs. 5 and 7 in Ratnam and Nelson 2000).
We also demonstrate that only sequential procedures
can fully exploit such temporal correlations in spike
trains, and increase detection performance beyond the
performance achievable by traditional trial-based pro-
cedures. This is because in contrast to trial-based pro-
cedures (Ratnam and Nelson 2000; Chacron et al. 2001),
sequential testing incorporates memory in the decision
making process. Anti-correlations in spike trains have
been observed in several sensory systems (Kuffler et al.
1957; Amassian et al. 1964; Bullock and Chichibu 1965;



Lowen and Teich 1992; Ratnam and Nelson 2000;
Steuer et al. 2001) and may be more widespread than
hitherto reported. Thus, while it is often assumed that
spike trains have no memory (i.e., ISIs are independent),
this study indicates that correlations in afferent spike
trains can play an important role in signal encoding and
detection.

Materials and methods

We consider a spontaneously discharging neuron. At some
unknown point in time its spike train is perturbed due to a stim-
ulus, which either adds one spike or shortens an ISI. Subsequent to
the perturbation the neuron returns to its baseline activity. Since
baseline spiking activity fluctuates, if the perturbations are weak
and limited in duration, they can be obscured by the fluctuations.
Our goal is to determine whether there are physiological mecha-
nisms that can correctly detect perturbations while ignoring the
intrinsic fluctuations.

Spike trains and signal generation

Extracellular recordings of spontaneous activity were made from
P-type primary electrosensory afferents of the weakly electric fish
A. leptorhynchus. The experimental procedures are described in Xu
et al. (1996). A4. leptorhynchus has a quasi-sinusoidal EOD wave-
form with a fundamental frequency that depends on the individual
and ranges from 750-1,000 Hz. P-type units fire maximally once
per EOD cycle and randomly skip cycles between successive spikes.
On average, they fire on about one-fourth of the EOD cycles. This
ratio is the per-cycle-probability of firing p. Information is encoded
in the neural spike train as changes in p, and hence these units are
called probability coders. Since p changes with stimulus intensity,
stimulus amplitude is coded as a change in spike rate (rate-coding
mechanism). Experimentally obtained spike trains from P-units
(sampled at 13.89 kHz, 72-us interval) were resampled at the unit’s
EOD frequency, which corresponds to a sampling period of
approximately 1 ms (Ratnam and Nelson 2000). The spike train
was represented as a discrete binary valued sequence x[n], where n
is the number of elapsed EOD cycles since the start of the
recording. Since units fire at most once per EOD cycle, x[n]=1 if
there is a spike at cycle n, otherwise x[n]=0. To determine the effect
of discretization, the detection performance for the resampled spike
train was compared with the original spike train, sampled at
13.89 kHz.

To mimic the task a postsynaptic neuron faces when detecting a
small change in spiking activity, two types of synthetic signals were
added to the baseline spike train: (1) a spike was randomly added
to x[n] at a location that did not already contain a spike; (2) a
randomly selected ISI was shortened by 1-3 EOD cycles. In the
case of the afferent, shortening an ISI by kK EOD cycles effectively
adds k/I spikes, where I is the mean ISI. These signals represent
small perturbations of the spike train and are motivated by
experimental observations of small numbers of spikes being added
due to weak stimuli (Fitzhugh 1957; Vallbo 1995; Tougaard 1999),
or of ISIs being shortened (Goldberg and Fernandez 1971; Blanks
et al. 1974; Tricas and New 1998; Ratnam et al. 2001).

Detection theory

The detection of a change in spiking activity in response to a signal
is performed by a statistical test of hypotheses (reviews: Green and
Swets 1966; Rieke et al. 1997; Gabbiani and Koch 1998). Testing
requires a decision statistic, which is usually the spike count in a
given time window, and a decision-making strategy. In trial-based
detection as usually employed in neurophysiology (e.g., Relkin and
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Pelli 1987; Shofner and Dye 1989; Lee et al. 1993; Ratnam and
Nelson 2000; Chacron et al. 2001), the neuron’s spike count in
response to a stimulus (the alternate hypothesis, H;) is measured
under repeated trials, and compared to the baseline (spontaneous)
activity (the null hypothesis, Hy). We test for the mean increase A
in the spike count y due to the stimulus by counting in a fixed time
window. This can be represented as:

Hj : y =y, (noise only: Null hypothesis) )
H, :y =y, + A(signal + noise: Alternate hypothesis)

When the spike count crosses a specified threshold 7y, it is
assumed a signal is present, and H; is accepted, otherwise H, is
accepted. The performance of the detector can be assessed from the
probability distribution functions (PDFs) of the count under the
two hypotheses, and the threshold (Fig. 1). Performance is deter-
mined by the probability of a correct detection (P,), acceptance of
H, when it is true; and by the probability of false alarm (Py,),
acceptance of H; when in fact Hj is true. By systematically varying
the threshold the relationship between P, and P, can be depicted
using a receiver operating characteristic (ROC) curve. This deci-
sion-making strategy is the Neyman-Pearson scheme and trials are
assumed to be independent. A common parameter to characterize
signal discriminability is d’, which refers to the degree of overlap
between the PDFs. When the PDFs are Gaussian distributions with
equal variance, d' = ”;‘, Thus, both the SD (o) and the mean increase
in the spike count determine signal detection performance. The
SNR is the square of d’.

We modified the standard trial-based procedure in two ways.
First we replaced the counting procedure with leaky integration.
This makes the decision statistic more realistic as it better reflects
the membrane voltage of the postsynaptic neuron. Then we mod-
ified the decision-making strategy, replacing trial-based testing with
sequential (continuous) testing.

Decision statistic: the neural integrator output

Counting spikes in a fixed time window (boxcar counting, or trial-
based testing) can be performed such that successive window
locations are non-overlapping (Fig. 2A), or by sliding the window
forward one EOD cycle (or sampling period) at a time (overlapped
counting, Fig. 2B). A non-overlapping window counts each spike
only once, while an overlapping window counts each spike 7 times,
for the duration of the overlap. Each spike causes an elevation of
the filter output for a time 7. Thus, the effect of a single spike
persists for a time 7 in the output of the counter, and the counts
from overlapping windows are correlated over a time 7.

A Y
N |
0.2 | SN
= |
E
3
© 0.1
o
0 o —
Spike count

Fig. 1A,B In trial-based testing, the presence of a signal in noise
(S+ N) versus the presence of noise alone (N) can be tested using a
binary hypothesis test. A The probabilities of detection (P,) and
false alarm (Py,) are assigned based on spike count distributions of
the N and S+ N situations. The area under the probability density
functions (PDFs) to the right of the threshold y determines P, (light
gray) and Py, (dark gray). B The receiver operating characteristic
(ROC) curve shows the trade-off between P, and Py, as a function
of threshold. As the threshold decreases, both P, and Py, increase
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Filter output

A Non-overlapping boxcar

B Overlapping boxcar
—————— >

C Exponential

Fig. 2A—C Spike counting implemented using filters. Spike sam-
pling rate is the electric organ discharge (EOD) frequency. A, B
Spikes can be counted in a fixed time window of duration 7 by
multiplying the spike train (top left) with a unit-amplitude boxcar
window (first column) and summing. The second column shows the
output of the filter; the dotted line indicates the mean filter output.
In A successive counts obtained by sliding the window forward
without overlap results in output every 7 EOD cycles. In B
successive counts obtained by sliding the window forward in steps
of one EOD cycle result in output every EOD cycle. C A leaky
integrator can be implemented as a filter with exponential window
shape, and time constant 7. The output of a leaky counter is
continuously valued in contrast to the discrete values obtained
from the boxcar window. The third column shows the PDF
obtained by binning the filter output. In A and B for large sample
size (here ~3x10° EOD periods) the PDFs are identical. The fourth
column shows the ROC when the task is to detect an added spike.
The dotted line is chance performance. The ROCs for boxcar
filtering are discrete, with only a few possible P,s and Pys (circles),
while the ROC for the exponential filter is continuous valued

Overlapped counting is a linear filtering operation. The boxcar
window is the impulse response A[n] of the filter, which is the output
of the filter in response to a single spike. If x[n] is the input spike
train, the output y[n] of the filter is the convolution of the window
with the spike train according to y[n] = x[n] % h[n|. For the over-
lapping boxcar window where counting is performed in a window
of length T, h[n]=1 for 0 < n< T, and zero otherwise. It can be seen
that the non-overlapping boxcar filter output is a subset of y[n]
sampled at intervals T apart (Fig. 2A, B). While spike counting is
often employed in rate coding models, a more realistic description
should consider real membrane characteristics. While there are
many models of neural integration, a commonly used mechanism is
leaky integration, which is a low-pass filter with an exponentially
decaying impulse response (Fitzhugh 1957; van Rossum 2001). The
decay rate is governed by the time constant 7' of the membrane.
The filter has exponentially weighted memory and gives greatest
weight to the most recently occurring spike (Fig. 2C). This is unlike
boxcar counting where memory is perfect but finite and all spikes in
the window are weighted equally. The impulse response function
for the leaky integrator is A[n] = e™"/T, where n>0 is an integer. For
large T (210), the area under the filter is approximately 7, and so
the mean output for a leaky integrator becomes equal to the area
under a boxcar window of length 7 It should be noted that for the
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exponential filter, 4[n] takes non-integer values, and the output y[n]
can assume values between 0 and 7. When a spike is convolved
with the filter function, the output is the spike broadened in time
according to the impulse response function /. Thus, the filter out-
put samples will be correlated, and the extent of broadening can be
defined by the correlation time:

(2)

k=1, 2,3 ..., where p, are the serial correlation coefficients of the
output. For a process in which the input samples are independent,
the correlation time of the output after filtering is equal to the time
constant of the filter.

P-type baseline activity x[n] was filtered using a leaky integrator
with time constant 7, and the PDF was obtained by binning the
filter output y[n]. The PDF describes the possible values that y[n]
can assume and their probability of occurrence, but it does not
provide information about dependencies (i.e., correlations) in the
time series. Figure 2 shows the PDFs for the three filters. In
addition to being a more realistic description of neural integration,
the leaky integrator has the advantage that the PDF is continuous
valued. The properties of the PDFs determine the ROC, since Py,
and P, are calculated from the area of the PDFs under H, and H;.

To determine the detectability of small changes to the spike
train, a single spike (the signal) was added to the spike train. The
spike train was filtered and the detectability of the signal in the
output y[n] examined. If a spike is added at n=m, and the spike
train is exponentially filtered, the effect of the spike for n>m is given
by the impulse response A[n — m] = e~"")/T_ For large T (=10), it
can be shown that the mean increase 4 in filter output in a window
of length T, beginning at n=m is 4=L(1—¢ /7). In other
words, the effect of the added spike persists in the output by
increasing its mean for some time. Thus, to test for the presence of
a signal, we define a “‘signal window”, the time following the added
spike during which the effect of the spike is appreciable. Since the
correlation time of the filter output is 7, the time constant is a
natural candidate for the signal window duration, thus we set
T,=T for the remainder of this work.

Signals can also be weaker than a single added spike, such as
those that induce a change in spike timing. This is modeled by
shortening an ISI. If an interval is shortened by kK EOD cycles, the
mean change in y is kA/I. If k<I, the perturbation in y[n] is less
than the addition of a spike. Thus shortening intervals allows for



more graded responses to a stimulus. Since the effect of the
shortened interval is not noticed until the filter encounters the spike
terminating the interval that is shortened, the signal window cor-
responds to the duration 7 from the spike terminating the interval.
Other possible signals, for instance combinations of spike additions
and deletions, or lengthening and shortening of intervals can be
treated in a similar manner.

Decision-making strategies

The Neyman-Pearson test can be extended so that the filter output
is examined continuously. This means that decisions are made
every sampling instant, or EOD cycle. The filtered spike train y[n]
was used as the decision statistic to perform the binary hypothesis
test. Earlier we defined a signal window, since filtering (integrating)
the input spike train smears out a spike. For a given threshold 7,
whenever the filter output y[n] crosses the threshold within the
signal window, it was considered to be a correct detection, other-
wise it was considered to be a false alarm. There are several ways in
which the hypothesis test can be performed (Fig. 3).

Scheme 1: trial-based testing

Consider an exponential filter with time constant 7" that produces
filter output y[n]. If only every Tth sample is retained (i.e., sub-
sample; Fig. 3B), this is equivalent to the non-overlapping counting
scheme (since the correlation time of the filter is 7). Hypothesis
testing using these samples is similar to the trial-based procedures
employed in neurophysiology, where spikes are counted in win-
dows of fixed duration over repeated trials (Relkin and Pelli 1987,
Shofner and Dye 1989; Lee et al. 1993). It should be noted that for
a signal window of length T only one decision is made in the signal
window. Py, and P, were calculated by dividing the number of hits
by the number of trials, in the absence and presence of a signal,
respectively.

Scheme 2: testing every sampling instant

The trial-based detection scheme can be extended by considering all
samples y[n] (Fig. 3A). The number of possible samples during the
signal window is equal to 7, and so T decisions are made in the
signal window. This scheme calculates the per sample probability of
detection or false alarm, and differs from scheme 1 in which only
one sample per window of duration 7 is considered. Although this
scheme can be implemented sequentially, all decisions are inde-
pendent. That is, while decisions are made sequentially, only the
total number of threshold crossings is considered, without reference
to prior decisions. Thus, only the information contained in the
PDF of y[n] is used.

We are interested in improving schemes 1 and 2 because, in
addition to their lack of biological realism, they suffer from other
drawbacks. In scheme 2, if some of the 7" samples in the signal
window do not exceed threshold, then the number of misses is
increased and so the detection probability is lowered. Further, both
schemes fail to incorporate important information afforded by
temporal information in the spike train, in particular, negative
correlations between adjacent ISIs. We can improve on these
decision strategies by using two different kinds of sequential deci-
sion-making strategies.

Scheme 3. sequential testing

Here again, every sample point is tested. At the first instant that
y[n]=y (H, is favored) a hit is scored. The hit is a correct detection if
it occurs within the signal window, otherwise it is a false alarm.
After a threshold crossing the test is terminated. If y[n] <y, Hy is
favored, and testing continues. This is the classical sequential
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Fig. 3A-D Illustration of the detection schemes. The input spike
train (267 spikes s™!, p=0.35 spikes/EOD cycle) is filtered with an
exponential filter with time constant 7, and decisions are made
using four different schemes (horizontal bar is T=10 EOD cycles,
13 ms). A Filter output (mean 3.66+0.42 spikes) which is
evaluated every EOD cycle. When the filter output exceeds the
threshold y=4.36 a hit is generated (triangle). B Trial-based testm%
using non-overlapping samples is performed by using every T

sample of the filter output (since the correlation time of the filter
equals 7). The sampled output points (dots) are a subset of samples
shown in A separated by time 7. Note that only one of the hits
generated in A is sampled in B. Neither scheme takes into
consideration the temporal correlation between counts. C Sequen-
tial testing, where every output sample is tested as in A, except that
testing terminates when the threshold is exceeded, and restarts 7'
EOD cycles later. D The counter is reset following a hit and
restarted on the next EOD cycle, which makes continuous
sequential testing possible. This is the leaky integrate-and-fire
neuron. The advantage of testing strategies C and D compared to A
is that groups of correlated hits are excluded (the second and third
hits in A that are separated by a time interval < T register as only
one hit in C and D). The counting strategy in C and D is similar to
a random walk towards a barrier and is sensitive to the history or
temporal sequence of counts

testing procedure of Wald (1947). The sequential scheme can be
extended by restarting after a dead-time (Fig. 3C), or by resetting
the integrator (Fig. 3D) immediately following a threshold cross-
ing. These modifications to schemes 1 and 2 result in a radical
departure from trial-based testing, with important consequences.
The sequential scheme overcomes the deficiency of scheme 2, since
one hit in the signal window is sufficient to trigger detection.
Another advantage is that it incorporates memory of prior deci-
sions. However, a drawback is that the PDF is truncated, because
testing stops when the threshold is exceeded, and filter output
values above the threshold are non-existent, which makes the PDF
dependent on the threshold. Because of this Py, cannot be calcu-
lated and so the ROC cannot be constructed. Instead the false
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alarm rate (number of false alarms per second) is used, and per-
formance is characterized using an operating characteristic (OC)
curve of P, versus the false alarm rate.

When using sequential testing with dead-time (Fig. 3C), testing
is terminated after each hit and restarted after the dead-time 7. T,
is set equal to T since the correlation time of the fluctuations in the
filter output is ~7, and the output will have drifted back to its
normal values. The drawback of this scheme is that it is not bio-
logically realistic, but it has the advantage of being more analyti-
cally tractable. For sequential testing with reset (Fig. 3D), the
integrator is reset to zero. Upon exceeding the threshold at some
time n, we restart the integration by setting y[n]=0 (the resting
potential of the leaky integrator), and let decision making continue
on subsequent samples. This is the familiar integrate-and-fire
model. Resetting of the integrator after a threshold crossing erases
the memory of the prior events. Since the integrator has to return to
its baseline values, there is a time period when no threshold
crossings are possible (the absolute refractory period), and a fur-
ther period when threshold crossings are less likely (relative
refractory period).

Comparisons with low order models

Ratnam and Nelson (2000) and Chacron et al. (2001) showed that
regularity of the spike train, and particularly negative ISI correla-
tions, decreased the SD of the counts in trial-based detection, and
thus increased the detectability of a signal. However, trial-based
detection does not explicitly use the temporal correlations in the
spike train, since only the information in the PDF is used.
Sequential testing differs in that it is sensitive to the serial depen-
dencies in the input spike train. Thus, it is expected that the tem-
poral structure of the spike train affects signal detectability when
using sequential tests. To test this, the afferent spike train was
compared with models that reproduce the lower order statistical
features of the data, and incorporate temporal correlations to
varying degrees. The afferent was compared with the binomial (B)
and the zeroth-order Markov (Mg) renewal process models, and
with a non-renewal model, the first-order Markov (M;) process.
These models were used since they are point-process models with
well-defined statistical properties. These properties, including ISIs,
joint ISIs and serial correlations are described in Ratnam and
Nelson (2000). Note that they do not model the membrane char-
acteristics or the driven response of the neuron, and more detailed
models of P-type afferents exist (Kashimori et al. 1996; Nelson et al.
1997; Kreiman et al. 2000; Chacron et al. 2000). The models by
Nelson et al. (1997) and Kreiman et al. (2000) are renewal models,
while the model by Chacron et al. (2000) exhibits serial depen-
dencies. The binomial spike train was generated by shuffling x[#], in
order to make the samples independent. Only the per-cycle prob-
ability of firing p is matched to the afferent. The M spike train was
generated by shuffling the ISIs, and preserves both p and the ISI
distribution. The M, spike train was generated by constrained
shuffling of the ISI sequence, so that the joint distribution of
adjacent ISIs, the ISI distribution and p are preserved. M, exhibits
non-zero ISI correlations. The afferent and model spike trains were
subjected to the same analysis throughout this work.

Results

Spontaneous P-type afferent activity was recorded from
49 fibers from six A. leptorhynchus. The electric organ of
Apteronotus is neurogenic, and continually discharges
throughout the fish’s life, as well as under neuromus-
cular blockade. Therefore we also refer to the baseline
spike rate (the firing rate in the absence of a stimulus)
as spontaneous activity. The EOD frequencies were

between 750 and 1000 Hz. The afferent firing rates
ranged from 65 to 563 spikes s™' (250 + 117 spikes s~ 1),
with a mean ISI of 4.3+2.3 EOD cycles. The statistical
properties of baseline spike trains and the lower order
statistical models have been characterized in detail in
Ratnam and Nelson (2000).

Filtering of the spike train

The spike train was integrated, or counted using boxcar
and exponentially weighted filters. The increase in the
filter output y[n] due to a spike is the convolution of the
spike with the filter impulse response /[n]. Figure 2
shows the comparison of the filter output, the PDFs and
the ROC:s for three filters: a non-overlapping boxcar of
length 7=10 EOD cycles, which is the same as counting
in fixed time windows (Fig. 2A), an overlapping or
sliding boxcar (Fig. 2B), and an exponential filter with
time constant 7'=10, which models the postsynaptic
membrane characteristics (Fig. 2C). The filter output
and the count distributions for the boxcar filters are
discrete, resulting in an ROC that consists of only a few
points. Because the output of the non-overlapping
boxcar filter is a subset (every 7™ sample) of the over-
lapping boxcar, the PDFs and ROCs are identical for a
large number of samples. They differ in that for the non-
overlapping boxcar only one output sample is taken
every T EOD cycles, and thus all output samples are
uncorrelated, while this is not the case for the overlap-
ping boxcar. The discrete ROC prohibits a finely tuned
detection algorithm, i.e., because there are so few points
on the curve, it is likely that the only choice would be
between a sensitive detector with an unacceptable false
alarm rate (large P, and Py,), or an insensitive detector
with low false alarm rate (small P; and P). Thus
counting spikes online provides little flexibility in the
implementation of a neural detector.

When using leaky integration, for large 7' (210) the
mean filter output (3.66 £0.42) is almost the same as for
boxcar counting (3.48 +£0.59), and thus spike counting
and leaky integration are equivalent. To determine
whether the discretization of the spike train introduces
sampling errors, we filtered the spike trains resampled at
different rates with a leaky integrator and compared the
ROC:s. The spike train was discretized at the maximum
possible sampling rate, the sampling rate at which spikes
were acquired (13.89 kHz, 72 us resolution), and at the
EOD rate (763 Hz, 1300 us). The worst-case error in the
detection probability was 2.3%. Thus, given the limita-
tions on spike sampling rates that are available in
experimental recordings, this discrepancy is an upper
bound on the discretization error. For P-type afferents,
which encode modulations only in their mean firing rate
and not in the phase of their firing with respect to the
EOD period, increasing the sampling rate beyond the
EOD rate does not provide improved detection perfor-
mance. For the remainder of the study, we use spike



trains discretized at the EOD rate, and use only the
leaky integrator.

There are several advantages to using a neural inte-
grator, such as a leaky integrator, instead of boxcar
counting: (1) membranes modeled as a leaky integrator
are biologically more realistic; (2) the output of the
integrator can take any value, which leads to continuous
valued PDFs, and so the operating point on the ROC
curve can be set for the entire range of P, (or Py,) values
(Fig. 2C); (3) the integrator can respond to changes in
spike trains more quickly and accurately because most
recent samples are given more weight, whereas boxcar
counting weighs all EOD cycles in the window equally;
and (4) the noise fluctuations are smaller for the leaky
integrator, and thus the SD of the output is lower (for
example, for a binomial spike train the SD of the leaky
integrator output is a factor of V2 less than the SD of a
boxcar counter). Thus, despite the ubiquity of count
analysis in the literature, more realistic neural integra-
tion has many advantages, particularly for coding and
signal detection. The leaky integrator used here can be
replaced with more accurate neural models, or Hodgkin-
Huxley type neurons. This increases the amount of detail
in model detector, but the following methods apply in
the same manner.

Effect of filter time constant on SD
of the filter output

Signal detectability is determined by the signal strength
(the added spike), and the SD of the PDF (the noise
fluctuations in the filter output). While the signal
strength only depends on the number of spikes added,
the SD of the integrator output depends on the time over
which spikes are integrated. For instance, for a renewal
spike train the SD grows in proportion to VT (Cox
1962). Even though for non-renewal processes such as
electrosensory afferent spike trains, this is not necessar-
ily the case (see below, and Ratnam and Nelson 2000),
the choice of a time constant remains crucial, and we
wish to determine an integrator time constant that gives
best detection performance.

Figure 4A shows the SD of the filter output as a
function of time constant for the afferent and the models
B, M, and M, for a representative fiber. The represen-
tative fiber in Fig. 4A will be used throughout this work.
Fluctuations in the filter output are smallest for the
afferent over a large range of time constants. For most
afferents the curve of the SD as a function of T stays flat
for a large range of T values, and often it shows a
minimum (inset). On the other hand, for the models
there is a large increase in the SD with increasing filter
time (see Ratnam and Nelson 2000 for a similar analysis
of the coeflicient of variation, CV). Intuitively, it can be
understood that the minimum is a result of regularity
(i.e., negative ISI correlations), by considering the case
in which a long ISI is always followed by a short interval
and vice versa (Ratnam and Nelson 2000). If the
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Fig. 4A,B Standard deviation (SD) of the count PDF as a function
of the leaky integrator time constant 7' (in EOD cycles) for afferents
(Aff) compared to their matched models (binomial: B, zeroth-order
Markov: M, first-order Markov: M;). A SD as a function of T for
a representative afferent and its matched models. The SD increases
with increasing 7 for the models, but for the afferent the curve
exhibits a minimum at 7= 10 (inset: expanded view). Nearly two-
thirds of the afferents exhibited a minimum in the curve. B Mean
SD curves for the population. The SD for the afferents stays
relatively flat up to about 20 EOD cycles (~25 ms) and thereafter
increases slowly

counting window now spans two intervals, the vari-
ability of the counts in this window will be decreased.
This is the case for the M| model (Fig. 4A inset) that
preserves only the adjacent afferent ISI order. Afferent
spike trains, on the other hand, are regularized over
much longer time scales (Ratnam and Nelson 2000), and
thus the minimum in the SD curve occurs later. Half of
the afferents showed a clear minimum (such as seen in
Fig. 4A) that could be fit with a polynomial, which
occurred between 3 and 13 cycles (95% confidence limit,
mean of 8 EOD cycles), corresponding to a range of
3—-17 ms. Figure 4B shows the mean SD over the pop-
ulation of fibers. There is no clear minimum because not
all fibers showed a minimum (not shown). The minimum
is shallow or not present when the PDF cannot be
approximated well by a Gaussian distribution, or
changes its shape for different time constants. Never-
theless, the mean SD of the afferent population is



748

relatively flat for time constants up to ~20 EOD cycles
(~25 ms).

Since the mean shift in the PDF under H, is inde-
pendent of the time constant for long 7 values, detection
performance is determined by the SD, and is best at the
minimum of the SD curve. The relatively constant SD
over a range of time constants for the afferent indicates
that detection performance will be close to optimal, and
will not vary much over this range of time constants.
The above results suggest an optimal range of integrator
time constants of 3-17 ms. This range is in good
agreement with the known time-constant for the post-
synaptic neuron. The E-type (excitatory) pyramidal
neurons in the ELL of A. leptorhynchus, which receive
input from the electrosensory afferents, have mean time
constants of about 16 ms (Berman and Maler 1998).
Since each ELL neuron receives input from multiple
afferents we choose a single time constant to represent a
hypothetical ELL detector cell. We used a time constant
of ten EOD cycles (~13 ms, the optimal time constant
for the representative afferent) for the remainder of this
work. For a time constant 7= 10, the mean filter output
y[n] for the afferent in Fig. 4A is 3.66 £0.42, while the
SD is 1.12 for the binomially shuffled spike train, 0.72
for My and 0.50 for M,. Table 1 shows the SD of the
filtered spike trains for 7= 10 for the population.

Single spike detection performance—trial based
detection

To illustrate the important issues in online (sequential)
detection, we first present results for the two simple and
equivalent detection schemes (schemes 1 and 2, see
Materials and methods). These are the trial-based
detection (scheme 1), and testing every sampling instant
(scheme 2). Although the filter output samples in scheme
2 are not independent, the performance of schemes 1 and
2 are the same, because the decisions are made inde-
pendently without reference to prior decisions. In
scheme 2, T decisions are made in the signal window,
and P, is calculated by dividing the number of hits by
T. In scheme 1, only one sample is considered during
T, which is the same as choosing any of the T samples
from scheme 2 at random. It can be shown that the

Table 1 Discriminability ¢ and standard deviation (SD) of the
leaky integrator output for trial-based detection

d SD y[n]
Afferent 1.58+0.26 0.42+0.07
M, 1.434+0.32 0.48+0.11
My 1.13+0.41 0.63+0.20
B 0.65+0.12 1.01+0.13

Shown are the mean £+ SD over the afferent population (n=49) and
the matched models. B binomial; M;Markov order one; M,
Markov order zero. Improved discriminability for afferents over
the models is a result of the smaller SD of the filter output. The
mean filter output y[n] for the population of afferents was
2.99+1.32

detection probabilities are the same for a sufficiently
large number of samples. The same applies to the cal-
culation of Pj,. Hence, the two schemes are equivalent.
Intuitively, this also follows because non-overlapping
counting is a subset of the overlapped counting em-
ployed in scheme 2.

Both schemes result in identical detection perfor-
mance and the ROC is shown in Fig. 5 for the repre-
sentative afferent and matched models, filtered using the
leaky integrator. The detectability of the change in filter
output y[n] due to the extra spike is much greater for the
afferent than for the matched models. This is also evi-
dent in the discriminability d” which is 1.53 for the rep-
resentative afferent, whereas for the models d’ is 0.53 (B),
0.88 (My) and 1.31 (M,). Table 1 shows d” for the pop-
ulation. The improved signal detectability for the affer-
ents compared to the models is due to the lower SD of
the PDF of the filter output (Fig. 4), a result of the
regularity and the strong negative correlations in the ISI
sequence (Ratnam and Nelson 2000; Chacron et al.
2001).

Single spike detection performance—sequential
detection

The filter-based detection schemes above are equivalent
to trial-based hypothesis testing that is commonly
encountered in the literature. The most significant
drawback of these is that the decisions are made inde-
pendently, without reference to prior decisions. If on the
other hand, the detector has memory of prior decisions,
it is likely to improve performance. For instance, we can
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Fig. 5 The ROC for trial-based detection of a randomly added
spike for the representative afferent in Fig. 4A, and its matched
models (afferent: solid line, My: dashed line, My: dash-dot line, B:
dotted line, chance: diagonal line). The spike train was filtered with a
leaky integrator (time constant 77=10) and the task was to detect
an added spike. P, is the probability of a threshold crossing in each
EOD cycle within a signal window of duration 7,=10 after the
added spike (correct detection). Py, is the probability of a threshold
crossing for each EOD cycle outside the signal window (false
alarm). Afferent performance is markedly superior to the renewal
models B and M,



make use of the knowledge that a burst of threshold
crossings within a time 7 of the first threshold crossing is
most likely due to the same event (either due to the
inserted spike or a random threshold crossing) since
each spike affects the filter output for a duration 7. This
means that threshold crossings are no longer indepen-
dent, and performance improvements can result if the
detector refers to prior decisions. Thus we need a deci-
sion-making system with memory, like continuous
(sequential) detection.

For example, if we consider scheme 2, to obtain P,;=1
the filter output needs to be above threshold in each EOD
cycle within the signal window. Even a single miss can
lower the probability of detection. Since adding a spike
elevates the filter output for 7 samples (the convolution
of the spike with the filter) the likely event will be a burst
of hits within a time 7T of the added spike. Therefore, if
this burst is detected, or even one threshold crossing
occurs shortly after the spike insertion point, it is suffi-
cient to determine that the signal has been detected (and
the remaining hits can be ignored). Consequently, we
need to look for only one threshold crossing instead of T’
in the window 7T,= T following the added spike.

This procedure can also be applied to the false
alarms, although in this case there is no prior knowledge
of their time of occurrence. But the same argument
holds, and we assume that threshold crossings within T
EOD cycles after the first hit are correlated, and con-
stitute one and the same event. After a threshold

Fig. 6A—C Signal detection performance when a single spike is
added to the baseline spike train. A Comparison of the operating
characteristic (OC) curve for the representative afferent of Fig. 5,
using the trial-based (dashed line) method (testing every EOD cycle,
see Fig. 3A), and the sequential (solid line) method (leaky
integrator with dead-time, see Fig. 3C). The OC curve shows P,
as a function of the absolute number of false alarms in the spike
train recording (~400 s). The sequential method provides vastly
improved performance over trial-based detection. B Number of
false alarms as a function of threshold, for the trial-based (dashed
line) method (scheme 2) and the sequential method (solid line). The
symbols at three example thresholds correspond to those in A. C
OC showing P, versus the false alarm rate using the sequential
method, compared to the performance for the matched models
(afferent: solid line, M: dashed line, My: dash-dot line, B: dotted
line). The leaky integrator time constant was 7=10 EOD cycles,
and the sequential method employed a dead-time of 10 EOD cycles
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crossing the test is stopped and resumed 7" EOD cycles
later (i.e., impose a dead-time). This truncates the upper
end of the PDF (values > threshold), and so Py, cannot
be calculated. P, however can be calculated by the usual
method. Instead of Py, it is more appropriate to work
with the false alarm rate, or the number of false alarms.
In the appendix we present an approximation that
allows us to calculate Py, and &, and compare the per-
formance based on these metrics.

Figure 6A shows the dramatic improvement in
detection performance for the afferent when using the
sequential method compared to the trial-based method
with testing every sampling instant (scheme 2). For a
given threshold P, and thus the detection performance,
is much higher for the sequential method (Fig. 6A) than
for the trial-based method, even though the number of
false alarms at high thresholds is nearly the same in both
methods (Fig. 6B). Figure 6C shows the detection
probability as a function of the false alarm rate for the
representative fiber compared to the matched models.
Performance gains due to the afferent regularity are
most dramatic at low false alarm rates. For example, at
a rate of one false alarm per second, P, for detecting a
spike is 0.83 for the afferent, 0.06 for the B model, 0.07
for My and 0.27 for M;. This corresponds to a perfor-
mance improvement for the afferent over the models by
a factor 14, 12, and 3, respectively. At lower false alarm
rates the improvement of the afferent over the models is
even larger.

Detection performance for spike train perturbations
smaller than a single spike

Given this remarkable detection performance for a
single added spike (note that the baseline rate is
~300 spikes s7!) it is relevant to ask whether a smaller
perturbation can be detected. Preliminary experiments
indicate that when very weak amplitude-modulated
(AM) stimuli were applied to the animal (Ratnam et al.
2001), the number of spikes added was less than one.
This corresponds to a shortening of intervals, and may
represent the weakest signal that can be encoded.
Interval shortening has also been observed in the elas-
mobranch electrosensory system (Tricas and New 1998)
and in the vestibular system (Goldberg and Fernandez
1971; Blanks et al. 1974). Figure 7 shows the detection

A C
1- 19,
Sequential /;1/ s/ Mo_/'_-"'
751 754 M s
/ ./__ B
0® 51 a® 54 -
17
254 oo 254"
v~ Trial based I
0 T T 0 T T T | 0 T T T
0 2 4 x10° 45 47 49 51 53 0 20 40 60

# false alarms

Threshold

False alarm rate (Hz)



750

0 T T T
0 20 40 60
False alarm rate (Hz)

Fig. 7 Signal detection performance when interspike intervals
(ISIs) are shortened. OC curve for the representative afferent of
Fig. 5 for ISIs shortened by 1, 2, and 3 EOD cycles, analyzed using
the same detector as in Fig. 6C. The mean ISI for the afferent was
2.9 EOD cycles, and shortening an interval by 1 EOD cycle
corresponds to adding 0.34 spikes. Shortening an interval by 3
EOD cycles is approximately the same as adding a single spike
(dashed line, as in Fig. 6C). Shortening an interval by fewer cycles
produces a graded response. Leaky integrator time constant was
T=10

performance when a single ISI was shortened in steps of
1, 2, and 3 EOD cycles. The mean ISI for this afferent
was 2.9 EOD cycles, so shortening an interval by one
EOD cycle corresponds to the addition of 0.34 spikes.
The OC shows that shortening an interval by three EOD
cycles is approximately equivalent to adding a spike
(dashed line), and that graded responses are obtained
when intervals are shortened by smaller values.

Leaky integrate-and-fire neuron

In the sequential scheme described above, testing was
terminated following a threshold crossing and restarted
after a time 7. This corresponds to a ‘blanking’ period
or dead-time following a threshold crossing. Such a long
refractory time would not only miss potentially relevant
information about the stimulus, but also the absolute
refractory period is generally much shorter than that
considered here. How then is the previous scheme to be
incorporated in a biologically realistic setting? If instead
of a fixed dead-time, the leaky integrator resets after a
threshold crossing, and begins integrating again from a
resting value (typically y=0), then further threshold
crossings are unlikely until the membrane is recharged,
at roughly a time T later (Fig. 3D). A major benefit of
resetting the integrator is that it resets the memory of
prior events, and thus, correlated hits are less likely to
occur. Figure 8A shows the OC for the decision scheme
that stops and restarts (dead-time of length 7', same as
Fig. 6C) overlaid with several points for an integrate-
and-fire neuron that resets to zero. At low false alarm
rates, the number of false alarms and detections deter-
mined using the integrate-and-fire model is practically
equal to the number calculated using the detector with
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Fig. 8A-D The leaky integrate-and-fire neuron as a sequential
detector (Fig. 3D). A Comparison of the OC for the integrate-and-
fire neuron (circles) with the sequential (solid line, same as Fig. 6C)
detector with dead-time (Fig. 3C) for a representative afferent. The
integrate-and-fire neuron resets to zero after each threshold
crossing and begins integrating anew. Its performance is almost
the same as for sequential detection with dead-time. B-D show the
effect of the reset on bursting activity. B Input spike train with
spike added at r=0 (zriangle). C Output of a leaky integrator
neuron that resets to zero after a threshold crossing. The high
threshold (4.82, dashed line) results in a false alarm rate of ~1 Hz
and a P, of 0.83. A single spike (bar) shows the response of the
detector neuron, which fires a spike typically a few EOD cycles
after the location where the added spike in the input occurred. D
Output of a leaky integrator neuron that does not reset after a
threshold crossing but has an absolute refractory period of 3 EOD
cycles. The bars show the response of the detector neuron, which
fires an isolated spike in response to a false alarm (bar labeled ‘fa’),
while correct detections typically result in bursts of a few spikes
(unlabeled bars). The lower threshold (4.56, dashed line) results in a
P, of 0.995 and a false alarm rate of ~10 Hz. The first detection
occurs usually at =0 or 1. If a neuron postsynaptic to the detector
neuron can distinguish between bursts of hits and isolated hits, the
false alarm rate can be lowered, while P, will not change
significantly (Fig. 9). Reset values and refractory periods between
these two cases will result in intermediate levels of bursting

dead-time. Thus, for the afferent the performance of the
integrate-and-fire model is very similar to the sequential
scheme with dead-time, which indicates that very high
detection performance is possible in a physiologically
plausible setting.
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Fig. 9A,B Burst firing can enhance signal detectability. A The
detection probability as a function of threshold shows that the total
probability of detection decreases with increasing threshold
(circles). The total probability was divided into the proportion
that resulted from a single hit (squares) or a burst of hits (lozenges).
At low thresholds, most detections are a result of burst hits,
whereas at high thresholds the proportion of single hits increases. B
Comparison of relative number of burst hits (lozenges) and single
hits (squares) for detections (open symbols) and false alarms (filled
symbols). Most single hits are due to false alarms and most burst
hits are due to correct detections of a signal

The properties of such a detector neuron depend on
the threshold and the reset value. The threshold
determines the operating point on the OC curve. Fig-
ure 8C, D illustrates how different thresholds and resets
affect the properties of the detector. A detector neuron
that has a high threshold and resets to zero, results in a
low false alarm rate. The neuron fires a single spike in
response to a detection or false alarm (Fig. 8C). The
spike is detected within a few EOD cycles after it is
inserted. Partial reset values (Lansky and Musila 1991;
Bugman et al. 1997) or no reset, result in different
behaviors of the integrate-and-fire neuron. If the inte-
grator is partially reset the refractory period becomes
shorter, and bursts of threshold crossings can occur.
Further, if the reset value is high, the memory is not
completely erased. Figure 8D illustrates the case where
there is no reset. A lower threshold is chosen here, and
thus the false alarm rate is higher. There are now
multiple, closely spaced threshold crossings (the neuron
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fires a burst of spikes) in response to the added spike,
while a false alarm results only in an isolated hit. This
is due to the anti-correlations in the baseline spike
train, which limit the duration and amplitude of fluc-
tuations from the mean baseline activity (see below).
Detection usually occurs immediately or on the first or
second EOD cycle after the inserted spike (Fig. 8D).
For values of reset intermediate to those between a full
reset (Fig. 8C) and no reset (Fig. 8D) the properties are
intermediate.

The presence of burst hits and isolated hits can
improve detection performance if bursts and isolated
hits can be differentiated. In Fig. 9A, we consider the
probabilities of bursts and isolated hits within the sig-
nal window. It was observed that for low thresholds
detections almost always resulted in a burst of hits, but
as the threshold increases, isolated hits become more
likely and bursts become less common. If all hits are
classified as isolated hits or bursts of hits, it becomes
clear that for a given threshold, the proportion of hits
that occurs as a burst is different for false alarms and
detections (Fig. 9B). At the relevant thresholds, only a
small fraction of false alarms occurs as a burst of hits,
while particularly at the lower thresholds, a significant
fraction of the detections occurs as a burst. That false
alarms tend to result in single hits is due to the negative
correlations in the spike train, because although burst
firing due to a false alarm is uncommon for the affer-
ent, it is common for renewal models where ISIs are
uncorrelated.

If a neuron postsynaptic to the detector can distin-
guish between isolated spikes and small bursts of spikes,
even higher detection performance than is reported here
may be possible. While it is beyond the scope of this
work to suggest a neural detection mechanism that can
take into account bursting activity, bursting seems to
provide a convenient mechanism for distinguishing
correct detections from false alarms, and hence raise
detection probability beyond those reported here. These
results are also true for a related species, Apteronotus
albifrons (Goense et al. 2003). Burst firing has received
much interest recently since it has been observed that
bursts carry more information than isolated spikes
(Kepecs et al. 2002; Gabbiani et al. 1996; Metzner et al.
1998).

Since a burst of hits in response to a false alarm is
uncommon for the afferent, even for lower thresholds,
the number of false alarms is relatively insensitive to
properties of the integrate-and-fire model, such as the
reset value or the length of the absolute refractory per-
iod. For instance, the false alarm rate did not change
when the model was reset to zero (Fig. 8C) or to the
mean filter output (not shown). The insensitivity of the
false alarm rate to resets and the refractory period would
allow for a robust implementation of the detector. Pre-
sumably real neurons with more complex filtering
properties than the simple leaky integrator can exploit
the statistical properties of the incoming spike trains to
improve detection performance.
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Fig. 10 Integrator output in the vicinity of a false alarm for the
representative fiber (D) shown in Fig. 5, and its matched models (4
binomial, B My, C M;). The spike trains were filtered using a leaky
integrator with time constant 7=10. Panels AI-DI: example
segments of the filter output along with the corresponding stretch
of spike train around a false alarm (at =0). The threshold was set
so that P, =0.1 for all cases. Fluctuations in the filtered output are
larger for the models. Panels A2—D2: the mean filter output in the
neighborhood of a false alarm averaged over all false alarm
segments in the spike train. The panels demonstrate that both the
amplitude and the duration of the false alarms for the afferent (D2)
are greatly reduced in comparison with the models (42—C2)

Correlations in the input and output

Since the output of the neural integrator is expected to
remain elevated for a time 7" due to the properties of the
integrator (the correlation time), the response to a false
alarm is also expected to persist for a duration 7. The
detector without reset is thus expected to respond to a
false alarm with a burst of hits. Surprisingly, while this is
true for the models, it is not so for the afferent as we
showed above. This has important implications for sig-
nal detection since it suggests that there are mechanisms
built into neural activity that can accurately reject false
alarms. This can be seen by comparing the filter outputs
for a false alarm for the afferent and the models. Fig-
ure 10 shows a sample trace of the filter output in the
neighborhood of a false alarm (top row), and the mean
of such traces aligned at the time of the threshold
crossing (bottom row). For the binomial model (panel
A2) the mean filter output did indeed decay with a time
constant 7. But for the afferent, the mean trace (panel
D2) decays much faster than the filter time constant.
Note also that for the afferent, the peak amplitude of a
fluctuation is much smaller than that for the models
(panels B2—-C2).

This faster decay for the afferent is also apparent if
we examine the auto-covariance function. This is shown
in Fig. 11, which shows the auto-covariance function of
the baseline spike train (top row) and of the filter output
(bottom row), for the representative afferent (Fig. 11,

panel D) and the models (panels A—C). The covariance
function for the binomial spike train (Fig. 11, panel Al)
shows that the samples are independent, as expected.
The filter output covariance (Fig. 11, A2) has width T
(10 EOD cycles), and a correlation time 7. of 10.3 EOD
cycles as predicted from theory. The afferent however,
shows an almost identical covariance function for both
the spike train (Fig. 11, panel D1) and filter output
(Fig. 11, panel D2). For the afferent the correlation time
7. of the filter output is 1.1 EOD cycles. This indicates
that correlations persist for a very short time, much
shorter than the time constant of the filter. The M, and
M, models exhibit varying degrees of correlation. For
M,, 7. for the filter output is 9.7 EOD cycles, and for
M, which is more regular and shows more narrowing of
the output covariance function, 7. is 5.2 EOD cycles.
Median correlation times for the population are 1.41
EOD cycles for the afferent (inter-quartile range 1.54),
10.5 for B (igr 0.29), 8.24 for M (iqr 2.19), and 4.09 for
M, (iqr 2.70).

Figures 10 and 11 indicate that the filter output is
seemingly decorrelated for the afferent. (The Appendix
treats some of the theoretical aspects of the effect of the
decorrelation on sequential detection performance.) This
decorrelation has the effect that when there is a false
alarm, the integrator output returns to its baseline values
very rapidly, and noise fluctuations are more limited in
duration. Both the amplitude and duration of the noise
fluctuations are smaller for the afferent than for the
models. The smaller amplitude fluctuations are reflected
in the SD (Table 1 and Fig. 4), and have also been
observed by Ratnam and Nelson (2000) and Chacron
et al. (2001). However, in addition to the reduced SD,
making use of the property that the noise fluctuations are
also of shorter duration results in an improvement in the
detection performance (Fig. 6) that goes beyond those
achieved by non-sequential procedures. These properties,
of a limited duration and amplitude of the false alarms,
suggest that biology may have evolved a strong noise
suppression ability (presumably using anti-correlations).
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Fig. 11 Auto-covariance functions for the input spike trains (zop
row) and filtered output (bottom row), shown for afferent (D) and
matched models (4 binomial, B My, C M,). The afferent is the same
as in Fig. 5. Spike trains were filtered using a leaky integrator with
time constant 7= 10. The samples of the binomial input spike train
are independent and identically distributed, and so the covariance
function is zero except at the origin (panel AI), whereas the auto-
covariance of the filter output has width T (panel A2). The M, and
M, models exhibit varying degrees of correlation (panels Bi, CI).
Note that for M, the ISIs are independent, but the spike train
demonstrates negative correlations. The output of the integrator
shows a more or less narrowing of the covariance function (panels
B2, C2). The afferent, however, shows an almost identical
covariance function for both input (panel DI1) and output (panel
D?2), i.e., integrating a strongly anti-correlated spike train does not
substantially increase the correlation time

Discussion

The methods of detection theory were applied in a
continuous (sequential) framework to P-type electro-
sensory afferent spike trains, to study the detectability of
small perturbations in the afferent firing rate. We show
that (1) a postsynaptic neuron can function as a
sequential detector, which integrates the incoming spike
train and at each instant performs a continuous
(sequential) test on the output, to test for the presence of
a signal. An integrate-and-fire neuron can function in
this manner, although other integration schemes, such as
the Hodgkin-Huxley model can also be used; (2) a
continuous detector can detect small increases in firing
rate of the input neuron reliably (single spikes), even
when the small stimulus-induced changes are superim-
posed on a high baseline firing rate; and (3) that the
temporal patterns in the spike train (particularly nega-
tive ISI correlations) are central to this ability. They
improve detection performance both by decreasing the
amplitude of noise fluctuations in the filtered spike train,
as well as by limiting the duration of noise fluctuations.
We note that negative correlations in spike trains are
ubiquitous, although it is only recently that they have
generated greater interest with respect to signal detection
(Ratnam and Nelson 2000; Chacron et al. 2001).

Sequential detection

All information about the environment, available to an
animal, is encoded in the form of neural spike trains.
The mechanism of encoding information in the spike
train, and the amount of information contained in spike
trains, both in the firing rate and in the precise timing of
spikes, is well studied (Reich et al. 1997; reviews: Rieke
et al. 1997, Borst and Theunissen 1999; Buracas and
Albright 1999). However, how the next higher neuron
decodes the signal has received little attention. Since the
first step is detection of a signal, we applied the methods
of detection theory and sequential analysis to the
problem of detecting a small perturbation in a spike
train. That this problem is behaviorally relevant has
been reported in several studies on detection of small
changes in spiking activity (Fitzhugh 1957; Bastian 1981;
de Ruyter van Steveninck and Bialek 1995; Vallbo 1995;
Tougaard 1999; Ratnam et al. 2001; VanRullen and
Thorpe 2001Db).

In weakly electric fish, nearby objects modulate the
per-cycle firing probability of P-type afferents. When
the object is small or far away the modulations are
extremely weak due to the low electrical contrast with
the surrounding water, and so small changes in the
afferent firing rate can be obscured by the intrinsic
fluctuations in the baseline firing rate. Previous studies
showed that the behavioral threshold for Apteronotus is
<1 pVem™ (Knudsen 1974), and in this range the
expected change in firing rate of P-type afferents is
about 1 spike s™!, superimposed on a baseline firing
rate of about 300 spikes s™' (Bastian 1981; Ratnam
et al. 2001). Nelson and Maclver (1999) showed that
small water fleas (Daphnia magna, 2-3 mm diameter)
could be detected at a distance of about 2 cm from the
fish. Based on computer reconstructions, they estimated
that the peak change in the per-cycle probability of
firing of an afferent at the time the prey is detected,
is about one added spike in a 200-ms window.
Ratnam and Nelson (2000) simulated the detectability
of added spikes using a trial-based approach and
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showed that 2-3 extra spikes in a 100-ms window could
be detected with 90% reliability. While this perfor-
mance greatly exceeds those attained by renewal spike
trains (such as Poisson spike trains), it is not adequate
to explain the predicted behavioral performance. This
study shows that the trial-based procedure limits
detection performance, and if a biologically realistic
sequential procedure is used, then a detector neuron
located in the ELL may achieve the predicted perfor-
mance (i.e., single spike detection). The single spike
superimposed on the baseline activity of the electro-
sensory afferent can be detected reliably, even though
the baseline is highly variable, as judged by the CV of
the ISI (Kreiman et al. 2000; Ratnam and Nelson
2000). The detectability of such small changes agrees
with the observed sensitivity of the electric fish. We
show that despite the high baseline firing rate, it is
possible to detect a single spike in the afferents in a
time that allows for fast behavioral responses
(<10 ms). The range of optimal membrane time con-
stants found also agrees with the measured time con-
stant of the ELL E-cell (Berman and Maler 1998). A
factor that is not taken into account here, but that may
further enhance signal detectability is afferent conver-
gence. The typical ELL cell receives input from 10-20
afferents (Shumway 1989b), and the averaging this
provides for can enhance detectability if multiple
afferents carry a signal. Detecting weak signals is only
one of the tasks of the ELL. The ELL cells are variable
in their morphology and properties (Bastian and
Nguyenkim 2001) and it has been shown there are
three spatial maps in the ELL (Heiligenberg and Dye
1982; Shumway 1989a, 1989b). Furthermore, the spa-
tiotemporal tuning of the cells has been shown to de-
pend on the type of stimulus (Bastian et al. 2002;
Chacron et al. 2003). Thus, how the ELL processes the
information present in the afferents depends on many
factors, and although this study shows that it is theo-
retically possible to extract one additional spike in a
single afferent using a simple neural mechanism, whe-
ther and where in the ELL this happens is still an open
question.

The implications of this study extend to neural sig-
nal detection at large. Detection theory has been ap-
plied to neurons since the 1950s (Fitzhugh 1957; Relkin
and Pelli 1987; Shofner and Dye 1989; Lee et al. 1993;
Celebrini and Newsome 1994). However, the SNR is
often relatively high, i.e., either the baseline activity is
low, the changes in response due to the stimulus are
high, or both. Another drawback of the trial-based
method that is typically used is that it does not suggest
how such a scheme may be implemented in a neuron.
Furthermore, the long counting periods that are often
used are not compatible with the speed of neural pro-
cessing (Gautrais and Thorpe 1998). Finally, they
typically rely on spike counting, and so most of the
information contained in the temporal pattern of the
spikes is not used. Some methods have expanded on
this by also using temporal information in the spike

train (Geisler et al. 1991; de Ruyter van Steveninck and
Bialek 1995), and this does improve detection perfor-
mance. But we are not aware of a method in which this
has been shown in a biologically realistic setting. In this
work the detection task was phrased as a sequential
decision making task. The decision statistic is the out-
put of a leaky integrator with the spike train as input.
Sequential analysis is sensitive to the temporal pattern
(correlation) of the samples. Note also, that in contrast
to spike counting, neural integration preserves the
temporal information in the spike train, since the most
recent spikes are weighted more heavily. This sequen-
tial detection scheme can exploit the temporal infor-
mation in the spike train, and thereby improve
detection performance. Furthermore, we have shown
that this is readily extended to a biologically realistic
neuron, with no loss in performance.

Sequential detection is relevant in many neural sys-
tems, since the detection of a small perturbation in a
spike train within a short time of its occurrence is a
general problem in the nervous system. This is impor-
tant, since the representation of relevant information,
like a sensory signal, by a single spike or very few spikes
is common (reviews: Rieke et al. 1997; Parker and
Newsome 1998). It has been shown to occur in the visual
system (Fitzhugh 1957; Barlow et al. 1971; Lee et al.
1993; de Ruyter-van Steveninck and Bialek 1995), the
mechanosensory system (Vallbo 1995), the auditory
system (Relkin and Pelli 1987; Tougaard 1999), and in
cortical neurons. The benefit of sequential detection,
that decisions are made continuously, becomes impor-
tant when quick detection is required, since the time
scales of biologically relevant signals and response times
are often short. The response time, or the time to per-
ception, has been shown to be on the order of 20-200 ms
(de Ruyter van Steveninck and Bialek 1995; Thorpe et
al. 1996; Rolls et al. 1999; VanRullen and Thorpe
2001a). Sequential detection (continuous signal detec-
tion) may be advantageous when the temporal dynamics
of decisions or tracking of the decision statistic is
required, since it may allow for earlier detection than is
possible using trial-based testing with fixed window size
(Kim and Shadlen 1999; Gold and Shadlen 2000;
Hernandez et al. 2002).

Role of regularity, correlations and temporal
structure

The sensitivity reported here relies on temporal corre-
lations in the spike train, particularly negative correla-
tions between adjacent ISIs. Although it has been
suggested that a refractory period introduces negative
correlations (de Ruyter van Steveninck and Bialek 1995;
Berry and Meister 1998; Goldberg 2000; Panzeri and
Schultz 2001) and negative correlations, or a high degree
of regularity have been observed in a number of systems
(Kuffler et al. 1957; Hagiwara and Morita 1963; Amas-
sian et al. 1964; Goldberg and Fernandez 1971; Blanks



et al. 1974; Lowen and Teich 1992; Tricas and New
1998; Goldberg 2000; Steuer et al. 2001), there is rela-
tively little data on their relevance to neural coding. It
has been shown that negative correlations can improve
detectability of weak signals (Ratnam and Nelson 2000;
Chacron et al. 2001), and can increase the information
content of the spike train (Stein 1967; Chacron et al.
2001; Panzeri and Schultz 2001), but here we establish a
direct connection between negative correlations in the
ISIs and signal detectability.

Correlations can improve detectability in two ways.
First, they decrease the SD of the spike count (Ratnam
and Nelson 2000; Chacron et al. 2001), or in our case the
SD of the neural integrator output (Fig. 4). The smaller
SD of the spike count however does not necessarily
require negative correlations in the spike train or non-
renewality, and thus does not fully explain their possible
function; a renewal process can have an equally low
variability. Here we show that correlations in the spike
train can improve detectability by a second mechanism,
beyond the gain that results from a lower SD. The
negative correlations result in an effective decorrelation
of the filter output, as a result of which random fluctu-
ations from the mean also have a shorter duration
(Fig. 11), and so a false alarm is less likely. The shorter
correlation time of noise fluctuations makes signals
easier to detect (DeWeese 1996). Furthermore, under
certain conditions, a true detection tends to result in
burst firing of the detector neuron, whereas the response
to a false alarm tends to be an isolated spike. Thus,
higher-order neurons could use burst firing to further
improve detection performance. In weakly electric fish,
burst-firing in ELL neurons can increase the information
carrying capacity (Gabbiani et al. 1996; Metzner et al.
1998; Kepecs et al. 2002), and as suggested here, this
may be exploited for improving signal detection per-
formance. The short correlation-time of intrinsic fluc-
tuations resulting from the anti-correlations in the spike
train cannot be exploited in a trial-based scheme, but
only in the more biologically plausible scheme of
sequential detection. Thus, the work establishes a con-
nection between correlations and sequential detection
performance, and suggests a biological basis supporting
sequential detection.

Behavioral aspects of the detection task

We proposed a biologically plausible method that is able
to exploit correlations in a spike train to achieve high
detection performance. This is a mainly conceptual
study that highlights important features of the problem,
and as such did not address many of the properties that
determine whether such a stimulus leads to a perception
or behavioral response. The detectability of a signal at
the level of the afferent does not necessarily mean it is
also behaviorally relevant. This study shows that a single
spike in the input can in principle be extracted, but
whether this actually happens also depends on many
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factors. For instance, the detection performance
depends on the reliability of spike propagation and
transmission, i.e., failures in spike propagation or neu-
rotransmitter release. The spatiotemporal properties of
the neural filters at higher levels in the pathway also
influence detection performance. This is illustrated in the
case of the mechanosensory afferent neuron in the
human hand, where a single spike was shown to lead to a
perception (Vallbo and Johansson 1976; Vallbo 1995).
However, whether an afferent spike led to a perception
depended on the region of the hand, in some regions one
spike sufficed while in others multiple spikes were nee-
ded, illustrating the importance of convergence and
higher order spatial filters. We therefore do not presume
that a single spike will always lead to a behavioral
response and further experiments are needed to address
this question in the weakly electric fish. Some other
factors that determine whether such a change in neural
spiking leads to a percept are the acceptable false alarm
rate, and which features of the stimulus are important.
There is a trade-off between detection probability and
false alarm rate (Fig. 6), between accuracy and speed
(Reddi and Carpenter 2000), sensitivity and resolution
(Schiller and Logothetis 1990), and which properties are
important depends on the neural system, the level, and
the purpose of the system. The relevant false alarm rate
is also likely to be different for different neurons and
systems. For example, if low false alarm rates are
required, it means signals will be missed, but if false
alarms can be eliminated at a later processing stage, such
as by discriminating between burst firing and isolated
spikes, higher false alarm rates may be tolerable. Sensi-
tivity can often be increased and false alarms eliminated
by convergence (Shadlen and Newsome 1998), but this
requires some degree of redundancy, although in sensory
systems, convergence can decrease (spatial) resolution.
Besides the detection problem, neurons have to solve an
estimation problem. The requirements are not neces-
sarily the same for both tasks, and again there may be a
compromise. Further studies will be needed to address
these issues.

Summarizing, physiologists have focused on trial-
based testing using aggregate spike counts. This proce-
dure is not only biologically unrealistic, but also fails to
exploit the mechanisms of dynamic noise-suppression,
like the presence of correlations in the spike train. In
behaving animals the demands of decision making are
far more stringent, and a framework that can exploit the
statistical properties of spike trains, is the continuous
detection method suggested here. The method is realis-
tic, and although real neurons have more diverse inte-
grative mechanisms, its broad principles and advantages
are likely to remain the same.
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Appendix

Performance comparison between sequential
and trial-based testing

Here we compare the performance of trial-based
detection and sequential detection with dead-time, and
discuss the effect of correlations in the spike train on
the performance of the sequential detector. As indi-
cated earlier, a direct comparison of the performance
of trial-based testing and sequential testing is not
possible. The decision-making processes are different,
since in sequential testing resetting the detector when a
threshold is exceeded and restarting the process, trun-
cates the PDF under H, at the threshold value. Con-
sequently, calculating &, o* and Py, is not possible in
sequential testing. This is in contrast to trial-based
testing where shape of the PDFs under both hypoth-
eses is independent of the threshold value. The class of
problems where testing is stopped and restarted after
the threshold is reached, or where the integrator is
reset, are random walk level-crossing problems. The
theory underlying these problems has wide applicabil-
ity and has received much attention in physics, engi-
neering and statistics (Blake and Lindsey 1973;
Leadbetter et al. 1983), but closed-form solutions are
not available, even for relatively simple cases such as
renewal spike trains. Given these difficulties, our
interest is to ask whether there is an equivalent but
simpler process that captures the performance of the
sequential scheme, and allows us to calculate the SD of
the PDF and Pg. This may allow us to explain the
performance improvement obtained in sequential test-
ing and the role of temporal dependencies in the spike
train on these improvements.

To simplify the sequential testing scheme shown in
Fig. 3C, we divide y[n] into non-overlapping blocks
of length 7 and examine whether there is at least one hit
within this block. If the block contains a signal then the
hit is a correct detection otherwise it is a false alarm. Let
P; denote the detection probability and P}, the false
alarm probability for the simplified scheme. To calculate
the probability of detection or false alarm within a
block, we only have to examine the maximum value of
the T samples within the window. Thus, we can con-
struct a sequence y7{k], where k (k=>0) is the number of
blocks of length T as follows:

Hy : yrlk] = glgixT(y[kT +1i]) (noise only)

Hy :yrlk] = gr<1l_a<xr(y[kT+ i]+A) (signal 4 noise)

where i are the individual samples in the block. Signal
detectability will be improved if the SD of the PDFs for
y1lk] is smaller than for y[n], since 4 is the same for both
cases.

Now we can construct the PDFs of y;|k]. It can be
shown that if x; is a sequence of independent random

(i.i.d.) variables where 0 < i< T, the distr}bution of the
random variable x = max {x;} isF(x) = [ Fi(x), where
Si< i=1

F{xp) is the probability that x < x, for the it sample and
F(xy) is the probability that x < x, for at least one of the
samples within the block. The right tail P(x)=1-F(x).
Therefore, if Py, ; and P,; are the probabilities of a false
alarm or detection in a single EOD cycle i within the
block, then the probability of detection P} is:

T
Pd*zl—HU—PdJ) 4)
i=1
The probability of a false alarm is:
T
Pr=1=T] (1= Pu) (5)

1

1

For a given threshold, it can be shown that the
probabilities (P; and P;) of detecting at least one
threshold crossing in a block, are larger than the prob-
abilities of detecting a threshold crossing in one cycle
(Prai and Py ;).

Figure 12A shows the OC for the representative
afferent and its matched binomial model, for the
sequential decision method (solid line), and the simpli-
fied block-based method (dashed line). For the affer-
ent the OC is the same in both cases, whereas for
the binomial model the simplification underestimates
the performance slightly. For renewal spike trains, the
deviation arises due to the presence of bursts of false
alarms. If a burst of threshold crossings occurs, then in
the sequential scheme, the dead-time is always triggered
on the first threshold crossing. This is not the case for
the block-based scheme and thus bursts are more likely
to spread out over two blocks, and hence the number of
false alarms is somewhat higher. For the afferent, bursts
of false alarms only occur when P; is very close to 1
(Fig. 9), but for the models, particularly the binomial
model, bursts occur more frequently even for small P}
values. Hence, for renewal spike trains, the block-based
methods underestimates P; for a given P, and is not as
good an approximation of the sequential scheme.

With this simplification we can compare the perfor-
mance of the block-based method with the trial-based
method. Figure 12B, C shows the ROCs for the repre-
sentative afferent and binomial model, where P; and P,
follow Eqs. 4 and 5 (solid lines), compared to the trial-
based method (dash-dotted line). The figure shows that
for the afferent there is a large improvement in perfor-
mance compared to the trial-based method. For exam-
ple, at a Py, of 0.013, which corresponds to a false alarm
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Fig. 12A—C Comparison of trial based and sequential detection
schemes. A The sequential scheme (Fig. 3C) is compared to a
simplified block based scheme to test the validity of the
simplification. The figure shows the representative afferent in
Fig. 5 and its matched binomial model (afferent sequential: solid
line, afferent block-based overlaps afferent sequential, binomial
sequential: dashed line, binomial block-based: dotted line). The
simplification yields similar performance for the afferent (the curves
are superimposed), but the binomial model shows some differences.
The performance of the My and M; models is intermediate (not
shown). B ROCs for the simplified scheme (solid line) compared
with the ROCs obtained from trial-based detection (dash-dot line)
for the afferent (dotted line: chance). Sequential detection provides
a large performance improvement over trial-based detection. The
open circles show the performance for the case in which all output
samples are independent (shuffled filter output), and the perfor-
mance is nearly the same as for the afferent, i.e., the filter output
samples are seemingly decorrelated (Fig. 11). C Results for the
binomial model (as in B). The ROCs are nearly identical for the
binomial model. Thus, sequential detection results in improved
performance when input spike trains are negatively correlated, but
may not provide much benefit when spike trains are binomial
(Poisson)

rate of 1 Hz, P, for detecting a spike is 0.83 for the
afferent using the sequential scheme while the P, for the
trial-based scheme is 0.29. For the binomial model there
is hardly any improvement. For this fiber the SD of y k]
is 0.21 (afferent), 1.04 (B), 0.67 (M) and 0.34 (M,). The
discriminability & is 3.25 (afferent), 0.63 (B), 1.01 (My)
and 2.03 (M,). The population means of the SD and d’
are shown in Table 2.

To examine the role of the correlations in the filter
output, the filter output was shuffled to remove serial
dependencies. Since the filter introduces positive corre-
lations in its output, the y[n] are in general not inde-
pendent within the time 7, and therefore P;; and Py, ;
are not identical and not independent. If, on the other
hand, the y[n] are shuffled so as to remove dependencies,
then the samples are independent and identically dis-
tributed, and the probabilities P,; of detection for each
cycle are equal (P,), and P; simplifies to:

Pi=1-(1-p)" (6)

Similarly for Py,

Pfazl_(l_Pfa)T (7

~—

Table 2 Discriminability & and the SD of the PDF that is obtained
by taking the maximum value attained by the leaky integrator
output in each block of size T

Filter output Shuffled filter output

d’ SD of y4{k]
Afferent 3.37+1.06 0.22+0.05 0.22+0.05
M, 2.56+£1.16 0.32+0.11 0.28 £0.09
M, 1.65+£1.07  0.56+£024  0.45+0.19
B 0.72+0.10 0.94+0.08 0.66+0.04

Shown are the mean=+SD of the afferent population (n=49) and
their matched models. The improved discriminability for the
afferents over the models is due to the smaller SD. The right col-
umn shows the SD when the filter output is shuffled prior to
dividing into blocks. For the models shuffling decreases the SD,
whereas for the afferent shuffling did not result in a change in the
SD, i.e., the filter output for the afferent is apparently decorrelated,
as also seen in Fig. 11

The ROC for the shuffled afferent filter output (Egs.
6 and 7, Fig. 12B, circles) is almost the same as the
ROC for the block based afferent output (Egs. 4 and 5,
Fig. 12B, solid line). This suggests the afferent filter
output samples behave as if they were uncorrelated.
The SD of yk] for the shuffled output is 0.22 (rep-
resentative afferent), the same as without shuffling
(0.21). For the models, the SD decreases as a result of
shuffling, as expected. The SD for the shuffled output is
0.69 (B), 0.51 (M), and 0.30 (M;). Table 2 shows the
population means. The improvement in the ROC
(Fig. 12B) is reflected in the smaller SD of y;{k] com-
pared to the SD of y[n]. This follows directly from
Egs. 6 and 7, from which it can be shown that the
distribution of the maximum value of a set of i.i.d.
random variables will always have a smaller variance
than the original distribution.
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