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A simple model of spike generation is described that gives rise to neg-
ative correlations in the interspike interval (ISI) sequence and leads to
long-term spike train regularization. This regularization can be seen by
examining the variance of the kth-order interval distribution for large k
(the times between spike i and spike i C k). The variance is much smaller
than would be expected if successive ISIs were uncorrelated. Such regu-
larizing effects have been observed in the spike trains of electrosensory
afferent nerve �bers and can lead to dramatic improvement in the de-
tectability of weak signals encoded in the spike train data (Ratnam &
Nelson, 2000). Here, we present a simple neural model in which negative
ISI correlations and long-term spike train regularization arise from re-
fractory effects associated with a dynamic spike threshold. Our model is
derived from a more detailed model of electrosensory afferent dynamics
developed recently by other investigators (Chacron, Longtin, St.-Hilaire,
& Maler, 2000;Chacron, Longtin, & Maler, 2001). The core of this model is a
dynamic spike threshold that is transiently elevated following a spike and
subsequently decays until the next spike is generated. Here, we present a
simpli�ed version—the linear adaptive threshold model—that contains
a single state variable and three free parameters that control the mean
and coef�cient of variation of the spontaneous ISI distribution and the
frequency characteristics of the driven response. We show that refractory
effects associated with the dynamic threshold lead to regularization of the
spike train on long timescales. Furthermore, we show that this regular-
ization enhances the detectability of weak signals encoded by the linear
adaptive threshold model. Although inspired by properties of electrosen-
sory afferent nerve �bers, such regularizing effects may play an important
role in other neural systems where weak signals must be reliably detected
in noisy spike trains. When modeling a neuronal system that exhibits this
type of ISI correlation structure, the linear adaptive threshold model may
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provide a more appropriate starting point than conventional renewal pro-
cess models that lack long-term regularizing effects.

1 Introduction

When a spiking neuron encodes an input signal, subsequent processing of
that signal by postsynaptic neurons must be based on changes in the sta-
tistical properties of the output spike train. If there is background spike
activity, then the variability of the background will in�uence how reliably
other neurons can detect the presence of a weak signal encoded in the spike
train data. The variability of a spike train is often characterized by the coef�-
cient of variation (CV) of the �rst-order interspike interval (ISI) distribution.
However, the �rst-order ISI distribution provides information about vari-
ability only on short timescales comparable to the mean ISI (for review, see
Gabbiani & Koch, 1998).

It is possible for a spike train to be irregular on short timescales but
regular on longer timescales, as we have shown experimentally for P-type
(probability-coding) electrosensory afferent nerve �bers in a weakly electric
�sh (Ratnam & Nelson, 2000). This longer-term regularization can be ob-
served by analyzing the kth-order interval distribution (the distribution of
time intervals between spike i and spike i C k). If successive ISIs in the spike
train are uncorrelated, then the variance of the kth-order distribution will be
a factor of k times larger than the variance of the �rst-order ISI distribution.
However, in our experimental study of electrosensory afferents, we found
that the variance between, say, every �ftieth spike in the spike train was
signi�cantly smaller than would be expected if successive ISIs were uncor-
related. We further demonstrated that this regularization is associated with
negative correlations in the ISI sequence and that the detectability of a weak
signal can be signi�cantly enhanced when such regularization exists. The
negative correlation structure and regularizing effects observed in the data
have recently been reproduced in a modeling study based on a stochas-
tic model of �ring dynamics (Chacron, Longtin, St. Hilaire, & Maler, 2000;
Chacron, Longtin, & Maler, 2001).

Refractory effects are known to have a short-term regularizing in�uence
on spike activity by decreasing the CV of the �rst-order ISI distribution and
increasing the temporal precision of the driven response (Berry & Meister,
1998). Refractory effects are often modeled by introducing a recovery func-
tion that reduces the �ring probability immediately following a spike (for
reviews, see Berry & Meister, 1998; Johnson, 1996). In such models, refrac-
tory effects are dependent only on the time of the previous spike and are
not sensitive to the duration of previous interspike intervals. If the input
is held constant in such models, then successive intervals are independent
and identically distributed. In this case, no correlations are introduced into
the ISI sequence. For such renewal models, the refractory mechanism has
no impact on the long-term regularity of the spike train. In contrast, the
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refractory mechanism presented here is implemented as a dynamic state
variable that retains a memory of previous activity spanning multiple in-
terspike intervals. This nonrenewal model of spike generation gives rise to
negative correlations in the ISI sequence and long-term regularization of
the spike train.

Here we present a simple model of a spike-generating mechanism that
gives rise to regularizing effects similar to those observed in electrosensory
afferent spike trains. Our model is inspired by the more detailed model of
Chacron et al. (2000, 2001), in which they showed that a stochastic model
of spike generation with a dynamic threshold is able accurately to describe
the key features of spike trains observed in the electrosensory afferent data
(Nelson, Xu, & Payne, 1997; Ratnam & Nelson, 2000). To achieve a good
match with the data, their model included about 15 parameters. However,
because our model has only 3 parameters and one state variable, the rela-
tionships between the model parameters and the spike train properties are
more readily apparent. Because of its simplicity, the model is easily adapt-
able to many neural modeling applications. In particular, it is a better choice
than more widely used renewal process models when modeling spike trains
that exhibit long-term regularizing effects.

2 The Linear Adaptive Threshold Model

The goal of this simpli�ed model is to obtain a minimal description of the
spike-generating mechanism that gives rise to long-term spike train reg-
ularization. This simpli�ed model is intended to serve as a generic basis
for constructing more detailed system-speci�c models, as illustrated by the
example in section 5. Although the model is highly simpli�ed, it captures
the important dynamic features of the process and re�ects a level of ab-
straction similar to that of the well-known integrate-and-�re model (Stein,
1967). An important simpli�cation is that the model presented here uses a
linear decay function rather than the exponential threshold decay function
used by Chacron et al. (2000, 2001). As we will show, this results in a simpler
relationship between the model parameters and the spike train character-
istics. Finally, the model presented here is formulated in a discrete-time
framework, although it can also be cast in continuous time. A discrete-time
formulation has the advantage of avoiding complications associated with
the numerical integration of gaussian noise in continuous time and for this
reason is more computationally ef�cient because it requires fewer integra-
tion steps per unit time. We are currently using an extended version of this
model (see section 5) to simulate the neural activity of the entire population
of 15,000 P-type electrosensory afferent nerve �bers of an electric �sh, so
matters of computational ef�ciency become of practical importance.

The linear adaptive threshold model contains three essential parameters
(a, b, and s), and a single dynamic state variable, the spike threshold h .
For the sake of generality, we also include a fourth parameter, c, the input
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gain, which we will subsequently take to be unity. As will be shown in
section 4, the parameter c is redundant in terms of functionality, it is included
to facilitate conceptualization of the model in a neural framework. If one
wishes to think of the input as a current and the threshold as a voltage level,
then the gain parameter c takes on units of electrical resistance. Figure 1
illustrates the operating principles of the model. The model is described by
four update rules, which are evaluated in the following order at each time
step n:

v[n] D ci[n] C w[n] (2.1)

h [n] D h[n ¡ 1] ¡ (b/a) (2.2)

s[n] D H(v[n] ¡h[n]) D

(
1 if v[n] ¸ h [n]

0 otherwise
(2.3)

h [n] D h[n] C bs[n] D

(
h[n] C b if s[n] D 1

h[n] otherwise
(2.4)

where H is the Heaviside function, de�ned as H(x) D 0 for x < 0 and
H(x) D 1 for x ¸ 0. The voltage v is the product of the input resistance
c and the instantaneous input current i, plus random noise w, where w is
zero-mean gaussian noise with variance s2. (In section 5, we show that
the model can easily be extended to include the effects of a membrane
time constant, but this extension is not necessary for understanding the
regularizingeffects of the model.) When thevoltage v rises above a threshold
level h , a spike is generated (s D 1), and the threshold level is elevated by
an amount b. The threshold subsequently decays linearly with a slope of
¡b/a until the next spike is generated. From equation 2.2 alone, one might
get the impression that the threshold h is unbounded and could decay to
arbitrarily large negative values. However, because the threshold level is
boosted whenever h < v, the voltage level v serves as the effective lower
bound for the threshold. The output of the model is a binary spike train s,
with s[n] D 1 if a spike was generated at time step n and s[n] D 0 otherwise.
The model parameters are restricted to a > 1, b > 0, and s > 0. The
parameter a has units of time steps, while b and s have units of voltage. The
update interval can be adjusted to meet the temporal resolution required
for a speci�c modeling application.

3 Statistical Properties of Spontaneous Spike Activity in the Model

3.1 Mean and CV of the First-Order ISI. In the absence of an input sig-
nal (i D 0), the linear adaptive threshold model generates spontaneous spike
activity. The parameter a controls the mean ISI, and the ratio s/b controls
the CV of the ISI distribution. Representative spontaneous ISI distributions
are shown in Figure 2. For a suf�ciently long spike train, the empirically
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Figure 1: Representative time history of variables in the linear adaptive thresh-
old model. Model parameters: a D 5 msec, b D 1 mV, s D 0.2 mV, c D 1 MV. The
input signal is a sinusoid with a period of 100 time steps: i[n] D sin(2p n/100)
nA. The voltage v[n], shown by the heavy solid line, is a noisy version of the
input. The spike threshold h [n] is shown by the sawtooth-shaped solid line. A
spike (s[n] D 1) is generated whenever the voltage crosses the threshold level.
Immediately following each spike, the threshold is boosted by an amount b and
subsequently decays linearly with a slope ¡b/a until the next spike is generated.
Total duration shown in the �gure is 100 time steps.

measured mean ISI (in time steps) becomes identical to a. The mathematical
basis for this result is presented in section 3.4 (see equation 3.7). The CV of
the ISI distribution can range between 0 and 1 and increases monotonically
with s/b.

The mean and CV of an experimentally observed spontaneous ISI dis-
tribution can be matched by appropriate adjustments of a and s/b and the
size of the time step. In our experimental studies of electrosensory affer-
ents in weakly electric �sh, the frequency of the oscillatory electric organ
discharge (EOD) signal provides a natural time reference. P-type afferents
�re at most one spike per EOD cycle (Scheich, Bullock, & Hamstra, 1973);
hence, it is natural to set the step size equal to one EOD cycle. For brown
ghost knife�sh, Apteronotus leptorhynchus, the EOD frequency is extremely
stable for an individual �sh (Moortgat, Keller, Bullock, & Sejnowski, 1998)
and ranges from about 600 to1200 Hz. The corresponding step size in the
model would range from 0.8 to 1.7 msec. Figure 3A1 shows the spontaneous
ISI distribution for a representative P-type afferent �ber (Ratnam & Nelson,
2000). The ISI distribution has a mean of 2.9 EOD cycles and a CV of 0.46.
Figure 3A2 shows the corresponding distribution for the linear adaptive
threshold model with a D 2.9 msec, b D 2.0 mV, and s D 1.0 mV. Although
the two distributions are clearly not identical, the mean and CV of the model
ISI distribution match that of the data (mean D 2.9, CV D 0.46).
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Figure 2: Representative spontaneous ISI distributions obtained from the linear
adaptive threshold model. The parameter values for a and s/b, as well as the
empirically measured mean and CV of the ISI distribution, are shown in each
panel. The parameter a controls the mean of the ISI distribution, and the ratio
s/b controls the CV. The left three panels (A1–C1) show results for a relatively
short mean ISI (a D 3 msec), while the right three panels (A2–C2) show results
for a longer mean ISI (a D 30 msec). Simulation duration was 100,000 time steps.

3.2 Negative Correlations in the ISI Sequence. The linear adaptive
threshold model gives rise to negative correlations between adjacent in-
tervals in the ISI sequence, meaning that short intervals tend to be followed
by long intervals, and vice versa. Similar effects are observed in electrosen-
sory afferent data, as illustrated by the joint interval histograms of adjacent
ISIs shown in Figures 3B1 and 3B2. In the experimental data, we observed
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Figure 3: Spontaneous spike train properties of the linear adaptive threshold
model compared with experimental data. The left side (A1–C1) shows the ISI
distribution, joint interval histogram, and variance-to-mean ratio of the kth-
order interval distribution for a representative P-type electrosensory afferent
nerve �ber from an electric �sh (Ratnam & Nelson, 2000). The right side (A2–
C2) shows the corresponding plots for the model with a D 2.9 msec, b D 2.0
mV, and s D 1.0 mV. The model is able to match the mean and variance of the
�rst-order ISI distribution (A1, A2), as well as qualitatively reproduce the short-
long correlations between neighboring intervals observed in the joint interval
histogram (B1, B2), and the approximate decline as k¡1 in the variance-to-mean
ratio (C1, C2). The dashed line in C1 and C2 indicates k¡1. Simulation duration
was 100,000 time steps.
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a mean correlation coef�cient of ¡0.52 in a population of 52 P-type affer-
ent spike trains (Ratnam & Nelson, 2000). For the particular unit shown in
Figure 3B1, the correlation coef�cient was ¡0.58, and for the model it was
¡0.40 (see Figure 3B2).

The linear adaptive threshold model qualitatively captures the short-
long correlation structure of the ISI sequences observed in the data. In the
model, the negative correlation structure arises because the decay function
tends to leave the threshold at a higher level following a short interval
than following a long interval. This short-long correlation structure has
been observed experimentally in many neural systems (Kuf�er, Fitzhugh,
& Barlow, 1957; Calvin & Stevens, 1968; Johnson, Tsuchitani, Linebarger, &
Johnson, 1986; Lowen & Teich, 1992), and is one indication of spike train
regularization.

3.3 Spike Train Variability on Longer Timescales. There are two sim-
ple ways to characterize the variability of a spike train on timescales longer
than the mean ISI. The traditional way is to count the number of spikes oc-
curring in nonoverlapping windows of �xed duration T and examine how
the variance of the count distribution changes with T. An alternative ap-
proach is to measure the time interval between every kth spike in the spike
train and examine how the variance of the kth-order interval distribution
changes with k. If the spike train arises from a renewal process (Cox, 1962),
there are no correlations in the interspike interval sequence, in which case
both the mean and the variance of the kth-order interval distribution grow
linearly with k. Thus, for a renewal process, the variance-to-mean ratio of
the kth-order interval distribution is a constant, independent of k. In the
traditional approach, where one counts the number of spikes in windows
of duration T, the variance-to-mean ratio of the count distribution is called
the Fano factor (Fano, 1947). For a renewal model, the Fano factor asymptot-
ically approaches a constant value for large T, but it is not constant for small
count windows (Cox & Lewis, 1966). Thus, analysis of the kth-order inter-
val distributions offers a more de�nitive test for deviations from a renewal
process in the ISI sequence.

In both the data and the model, regularization effects persist over time
periods that are much longer than a single interspike interval. As described
above, these longer-term effects can be quanti�ed by observing the behav-
ior of the variance-to-mean ratio of the kth-order interval distribution with
increasing interval order k. As shown in Figure 3C1, the variance-to-mean
ratio for the data falls rapidly for the �rst 10 to 20 interval orders (approxi-
mately as k¡1). The behavior of the model is quite similar (see Figure 3C2).
In the model, the dynamic threshold provides a long-term memory of pre-
vious spike activity, allowing regularizing effects to persist over multiple
interspike intervals. Thus, the simple linear adaptive threshold model is
able to capture the key features of spike train regularization observed in the
experimental data.
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3.4 The Mathematical Basis of Long-Term Regularity in the Model. In
this section, we explain how the mathematical structure of the linear adap-
tive threshold model gives rise to long-term regularity of the output spike
train. Speci�cally, we analyze spontaneous spike activity and show that the
variance of the kth-order interval distribution Var(Ik) approaches a constant
value for large k. The fact that the variance becomes independent of interval
order k means, for example, that the variance in the distribution of time
intervals between every thousandth spike in the spike train is essentially
the same as the variance between every hundredth spike. This is in striking
contrast to a renewal process model, for which the variance would con-
tinue to increase linearly with k, giving rise to a variance-to mean ratio that
stays constant for all interval orders k. The key result regarding long-term
spike train regularity for the linear adaptive threshold model is that Var(Ik)
approaches a constant for large k. Since the mean interval between spikes
grows linearly with interval order k, the variance-to-mean ratio will fall as
k¡1, as illustrated in Figure 3.

To understand why Var(Ik) approaches a constant for large k, it is useful to
recast the linear adaptive threshold model (equations 2.1–2.4) into a slightly
different form. The new formulation gives rise to a set of spike times that
are identical to those generated by the original model, but the internal state
variables are handled differently. Rather than raising the threshold level by
an amount b each time a spike occurs (as in equation 2.4), we will instead
lower the mean voltage level by an amount b. Since the decision of whether
to generate a spike (see equation 2.3) depends on only the relative difference
between the threshold level and the voltage level, these two formulations
will give rise to an identical set of spike times. Hence, either formulation can
be used when analyzing the statistical properties of the output spike train.
The two formulations of the linear adaptive threshold model are illustrated
in Figure 4.

Following the structure of the original model (equations 2.1–2.4), we
express the reformulated model as:

v[n] D ci[n] C w[n] C vbase (3.1)

h[n] D h[n ¡ 1] ¡ (b/a) (3.2)

s[n] D H (v[n] ¡ h[n]) D

(
1 if v[n] ¸ h[n]

0 otherwise
(3.3)

vbase D vbase ¡ bs[n] D

(
vbase ¡ b if s[n] D 1
vbase otherwise,

(3.4)

where vbase is the newly introduced baseline voltage level, and all other vari-
ables are as de�ned previously. Note that only two of the equations have
changed from the original model (equations 3.1 and 3.4), but all four have
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Figure 4: Reformulation of the linear adaptive threshold model to facilitate the
analysis of spike train properties. (A) Representative time history of sponta-
neous spike activity and internal state variables as originally formulated (see
equations 2.1–2.4). (B) Time history of the state variables in the reformulated
version of the model (see equations 3.1–3.4). The reformulated model gives rise
to an identical set of spike times. Parameter values: a D 20 msec, s D 0.2 mV,
b D 1 mV.

been rewritten above for convenience. In the reformulated model (equa-
tions 3.1–3.4), the threshold level h is never boosted; rather, it falls mono-
tonically with a constant slope (see equation 3.2). For spontaneous spike
activity, the input i is zero; thus, the voltage v is simply the baseline level
vbase plus random noise (see equation 3.1). In this reformulated version of
the model, the threshold falls linearly toward a noisy voltage �oor; each
time a spike is generated, the mean level of the �oor drops by an amount b,
as illustrated in Figure 4B.

Now consider what happens in the reformulated model between spike
i and spike i C k. Since k spikes were generated, the baseline level vbase will
have dropped by an amount kb. If we choose k suf�ciently large (k À s/b),
then the drop in the baseline level kb will be much larger than the standard
deviation s of the voltage �uctuations around the baseline. Thus, the change
in voltage level between the time of spike i and spike i C k is

Dvi, iCk D ¡kb C O(s), (3.5)

where O(s) is a small, random correction on the order of s related to the
voltage �uctuations around the baseline level. Since the threshold falls lin-
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early at a constant slope (¡b/a) and spikes are generated whenever the
threshold crosses the voltage level, then the time difference between spike
i and spike i C k is equal to the voltage difference divided by the threshold
slope; thus:

Dti, iCk D Dvi, iCk/ (¡b/a) D ak C O(as/b). (3.6)

Thus, for suf�ciently large k, the time interval between spike i and spike
i C k is equal to ak, plus a small random correction on the order of as/b. As
long as the threshold level starts well outside the noise band (kb À s), the
variance of this random correction will be independent of k. Hence Var(Ik)
becomes constant for suf�ciently large k (k À s/b). Furthermore, the mean
interspike interval hISIi is given by

hISIi D lim
k!1

Dti,iCk

k
D a, (3.7)

as was noted in section 3.1.
The two key results obtained above are that Var(Ik) approaches a constant

for large k and the mean ISI is equal to a. These two results are independent
of the noise structure used in the model. We formulated the model using
gaussian noise, but the same results would have been obtained for other
forms, such as uniform or pink noise. The noise structure will have an effect
on the asymptotic numerical value of Var(Ik). However, the fact that Var(Ik)
approaches a constant value, and hence that the variance-to-mean ratio
falls as k¡1 as shown in Figure 3C2, is a robust result that is independent of
assumptions about the detailed noise structure.

4 Driven Response Characteristics of the Model

The driven response characteristics of the linear adaptive threshold model
were evaluated using sinusoidal stimuli at frequencies between 0.1 and 100
Hz. In these simulations, the step size was taken to be 1 msec. The input sig-
nal was given by i[n] D S sin(2p f n/1000), where S is the stimulus amplitude
(arbitrary units) and f is the stimulus frequency (Hz). The total stimulus
duration was 100 seconds at each stimulus frequency. The response gain
and phase were computed using methods described in Nelson et al. (1997).
Brie�y, cycle histograms of spike times were constructed and normalized
such that the ordinate corresponded to the �ring rate in spikes per second. A
single cycle sinusoid was �t to the cycle histogram r(x) D R sin(2p x C w ) C B,
where x is the cycle fraction (0 · x · 1), R is the response amplitude, w is
the response phase, and B is the baseline �ring rate. The gain of the response
at each frequency is computed as the ratio of response amplitude R to the
stimulus amplitude S and has units of spikes per second per unit input. The
phase of the response at each frequency is given by the best-�t value of w
(degrees).
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As illustrated in Figure 5, the linear adaptive threshold model has high-
pass �lter characteristics. At low frequencies, the gain is proportional to
the stimulus frequency, and the phase shift is 90 degrees, implying that the
model behaves as a differentiator. At higher frequencies, the gain curve be-
comes �at, and the phase drops toward zero.Theoverall gain of the response
is determined by the model parameter b, which re�ects the amount that the
threshold level is elevated following a spike. The larger the threshold boost,
the lower the gain. In the low-frequency range, where the model behaves as
a differentiator, the gain is equal to 2p f/b, with units of spikes per second
per unit input. This functional form can be understood by considering the
response of the model to a sinusoidal stimulus of amplitude S and frequency
f . The rising phase of the sine wave will have a maximum slope of 2p f S.
The rising slope will tend to shorten the mean interval between threshold
crossings relative to baseline conditions. Recall that the threshold falls with
a constant slope of ¡b/a (see equation 2.2), and the mean ISI under baseline
conditions is equal to a (see equation 3.7). For a weak stimulus, a differential
analysis reveals that the ISIs are shortened on average by an amount corre-
sponding to a change in �ring rate of 2p f S/b, and hence an overall gain of
2p f/b.

If the input is scaled by an input gain c as in equation 2.1, then the
overall gain becomes 2p f c/b. The parameter c is redundant in terms of
being able to control the input-output gain of the model, since gain changes
can be accomplished by changing b. However, as discussed in section 2,
the parameter c is convenient if one wishes to interpret the model variables
as currents and voltages. Empirically, the phase of the response remains
unaffected by changes in gain (see Figure 5A).

The corner frequency of the high-pass �lter is determined by the model
parameters a and s/b. As these values increase, the corner frequency de-
creases. Qualitatively, the location of the corner frequency is related to the
timescale that characterizes the interval between successive spikes in the
spike train. If the shape of the ISI distribution is such that almost all ISIs
are short compared to the period of the stimulus, the model behaves as a
differentiator. If either a (which controls the mean ISI) or s/b (which controls
the CV) is large enough so that some of the ISIs in the spike train become
comparable to the stimulus period, then the gain of the response begins to
roll off, giving rise to the knee in the gain curve. Changes in the corner fre-
quency also result in a corresponding change in the phase of the response
(see Figure 5B).

5 Extensions to the Model

We now illustrate how one might extend the model to make it more bio-
physically plausible. For example, the extensions discussed here allow the
model to match the experimentally measured frequency response charac-
teristics of electrosensory afferent data better. The key point that we wish
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Figure 5: Frequency response characteristics of the linear adaptive threshold
model. The model has high-pass �lter characteristics. (A) Gain and phase for
three different values of b, with a D 3 msec and s/b D 1. The gain has units of
spikes per second per unit input. The gain varies inversely with b; the phase
curves are overlapping and indistinguishable . (B) Gain and phase for three
differentvalues of a, with b D 0.1 mV and s D 0.1 mV. The parameter a in�uences
the corner frequency of the high-pass �lter. Simulation duration was 100,000
time steps for a D 3 msec and a D 10 msec, and 500,000 time steps for a D 30
msec.

to make, however, is not that the extensions improve the �t to empirical
data, but rather that the extensions do not alter the long-term regulariz-
ing effects exhibited by the simpler model. In the linear adaptive threshold
model, there were no dynamics associated with the membrane voltage v.
Most neural modeling applications would want to include at least the ef-
fects of leaky integration by the cell membrane. This can be modeled as a
�rst-order low-pass �lter with time constant tm, which is incorporated by
replacing equation 2.1 with equations 5.1 and 5.2:

u[n] D exp(¡1/tm)u[n ¡ 1] C [1 ¡ exp(¡1/tm)]i[n] (5.1)

v[n] D u[n] C w[n]. (5.2)

Note that the noise term w[n] is added to the output of the low-pass �lter
u rather than to the input. Thus, we consider the noise to re�ect stochastic
properties that are intrinsic to the neuron rather than properties of the input
signal. In terms of the frequency response characteristics, this extension to
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the model causes a roll-off in gain and a decrease in phase above the corner
frequency ( fc D 1/2p tm) of the low-pass �lter.

The second extension is to change the linear threshold decay function to
a more biophysically plausible exponential decay toward a baseline level
h0, with a decay time constant th , as originally suggested by Chacron et al.
(2000). This is incorporated by replacing equation 2.2 with equation 5.3:

h [n] D exp(¡1/th )h[n ¡ 1] C [1 ¡ exp(¡1/th )]h0. (5.3)

This change in the representation of the threshold decay does not have a
signi�cant effect on the general features of the �rst-order ISI distribution
(see Figure 6A) or the long-term regularization properties (see Figure 6B),
but it does alter the frequency response characteristics of the model (see
Figure 6C). Representative gain and phase plots for the extended model
are shown in Figure 6C (solid lines). The change in frequency response
characteristics for the extended model can be appreciated by comparing
the general shapes of the gain and phase curves in Figure 6C with those
for the simpler model shown in Figure 5. The parameters for the extended
model were selected to closely match the average properties of P-type elec-
trosensory afferents recorded in our experimental data (Nelson et al., 1997;
Ratnam & Nelson, 2000). The extended model (equations 5.1–5.3, 2.3, and
2.4) is able to provide a good description of the response characteristics
of P-type electrosensory afferents, including the baseline ISI distribution,
interval correlations, and frequency response characteristics. However, the
main point of this section is to demonstrate that the linear adaptive threshold
model can be extended to match empirical data better, while maintaining
the long-term regularizing effects that are of central importance here (see
Figure 6B).

6 Weak Signal Detectability

In this section, we demonstrate that under certain circumstances, long-term
spike train regularization can dramatically improve the detectability of a
weak stimulus. We illustrate this by encoding a weak signal using two dif-
ferent neuron models: one that exhibits long-term spike train regularization
and one that does not. The parameters of the two models are adjusted to
have matched characteristics, including the mean and CV of the sponta-
neous ISI distribution and by the frequency response characteristics (gain
and phase) of the driven response. Such characteristics are commonly used
by neural modelers to assess how well a particular model describes ex-
perimental data. We show that although two models are well matched by
these criteria, they can have signi�cantly different properties in terms of
signal detectability. Our goal here is not to model any speci�c biological
signal or system but rather to present a generic example illustrating the
potential functional importance of long-term spike train regularization in
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Figure 6: Frequency response characteristics of the exponential adaptive thresh-
old model compared with experimental data. The left panels show the sponta-
neous spike train properties of the model: (A) ISI distribution and (B) variance-
to-mean ratio of the kth-order interval distribution. The right panel (C) shows
gain and phase of the driven response. The data points show the population-
averaged responses from 99 P-type electrosensory afferent �bers (modi�ed from
Nelson et al., 1997). Error bars represent the standard deviation of the popula-
tion average at each frequency. The continuous solid lines show the gain and
phase of the exponential adaptive threshold model with b D 0.11 mV, s D 0.04
mV, h0 D ¡1 mV, tf D 2 msec, and th D 30 msec. Simulation duration was
300,000 time steps.

biological systems and highlighting the importance of selecting a modeling
framework that adequately accounts for correlations in the ISI sequence.

6.1 Linear Adaptive Threshold Model. For a model that exhibits long-
term regularization, we use the simple form of the adaptive threshold
model. Alternatively, we could have used the extended model, since it also
exhibits long-term regularization, but the simple model embodies the es-
sential features that are relevant for the comparison. For this example, we
implement equations 2.1 through 2.4 with the following parameters: a D 20
msec, b D 0.5 mV, and s D 1 mV and a time step of 1 msec. This parameter
set gives rise to a spontaneous ISI distribution with a mean of 20 msec and a
CV of 0.69 (see Figure 7A1). For this example, we intentionally chose a s/b
ratio that produces an irregular spike train on short timescales, as judged by
the CV of the �rst-order ISI distribution. The frequency response character-
istics of the model are summarized in Figure 7B1. The model has high-pass
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�lter characteristics with a corner frequency of about 8 Hz. The effects of
long-term spike train regularization are shown in Figure 7C1, where it is
seen that the variance-to-mean ratio for the kth-order interval distribution
decreases as k¡1. As discussed in section 3.4, this decrease in long-term vari-
ability arises from memory effects associated with the threshold dynamics.

6.2 Integrate-and-Fire Model with Random Threshold. We now wish
to compare this model with one lacking any such memory effects. For the
memoryless model, we also need to be able to adjust the mean and CV of the
spontaneous ISI distribution, as well as the frequency response character-
istics. These criteria can be satis�ed by using a stochastic integrate-and-�re
model with random threshold (Gabbiani & Koch, 1996, 1998), coupled with
a linear pre�lter to adjust the frequency response characteristics. In this
model, the input signal i is passed through a unity-gain high-pass pre�lter
with time constant tf and summed with a constant bias input Ib, which
controls the spontaneous �ring rate of the model. This input signal is inte-
grated on each time step. When the integrated signal v exceeds a threshold
h , a spike is generated (s D 1). Following a spike, v is reset to zero, and h is
reset to a new random value drawn from a gamma distribution of order m.
Because the reset values contain no information about the previous state of
the system, there are no memory effects in the ISI sequence of this model.

In a discrete-time representation, this memoryless model including the
high-pass pre�lter is described by the following update rules:

f [n] D exp(¡1/tf ) f [n ¡ 1] C [1 ¡ exp(¡1/tf )]i[n] (6.1)

v[n] D v[n ¡ 1] C i[n] ¡ f [n] C Ib (6.2)

s[n] D H (v[n] ¡ h[n]) (6.3)

v[n] D (1 ¡ s[n])v[n] (6.4)

h[n] D (1 ¡ s[n])h[n] C s[n]gm[n], (6.5)

where gm[n] are random values drawn from a gamma distribution of order
m with mean Nx (Gabbiani & Koch, 1998):

gm (x) D cm (x/ Nx)m¡1 exp(¡mx/ Nx) (6.6)

with

cm D
mm

(m ¡ 1)!
1
Nx . (6.7)

The random threshold model as described above has four free parameters:
tf , Ib, m, and Nx.
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Figure 7: Comparison of two neural models with matched spontaneous ISI
and driven response characteristics. The left side (A1–C1) shows results for
the linear adaptive threshold model (see equations 2.1–2.4), while the right side
(A2–C2) shows an integrate-and-�re-based model with a random threshold (see
equations 5.1–5.5). The model parameters were adjusted to yield similar �rst-
order ISI distributions (A1, A2) and similar frequency response characteristics
(B1, B2). However, the higher-order interval statistics, as characterized by the
variance-to-mean ratio of kth-order interval distribution, are quite different (C1,
C2). The linear adaptive threshold model exhibits strong regularizing effects
at large interval orders, whereas the random threshold model has variance-to-
mean that is independent of interval order.
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6.3 Comparison of Response Characteristics. The response properties
of the stochastic integrate-and-�re model are shown in Figure 7 for tf D 20,
Ib D 0.51, m D 2, and Nx D 10. The mean and variance of the spontaneous ISI
distribution (see Figure 7A2) are almost identical to those of the adaptive
threshold model (see Figure 7A1). Also, the frequency response characteris-
tics of the two models are very similar (see Figures 7B1 and 7B2). However,
the random threshold model has no memory effects in the ISI sequence.
Hence, for spontaneous spike activity, each interspike interval is indepen-
dent of the previous interval. For such a renewal process model, both the
mean and variance of the kth-order interval distribution grow linearly with
interval order k, and hence the variance-to-mean ratio is independent of k
(see Figure 7C2). Thus, we see that the two models have almost identical
response characteristics, except for their long-term regularity as measured
by the kth-order interval variance-to-mean ratios.

6.4 Comparison of Signal Detectability. We now provide a weak input
signal to both model neurons and evaluate how reliably the signal can be
detected in the output spike train. Speci�cally, we consider a single-cycle
sinusoidal input signal with amplitude A and duration D, satisfying the
boundary conditions that the stimulus level and slope are zero at the begin-
ning and end of the stimulus cycle. In discrete time, the input signal can be
represented as

i[n] D A[1 ¡ cos(2p n/D)]. (6.8)

In order to highlight the effects of long-term spike train regularization, we
consider the case where the stimulus duration spans multiple interspike
intervals. The mean interspike interval for the two matched models is 20
msec, as determined from a 10 s interval of simulated baseline activity with
no stimulus present. In the following example, we consider an input signal
with duration D D 1000 msec, such that on average, about 50 spikes occur
during a stimulus cycle. The stimulus amplitude is chosen to be A D 0.25.

The average response to 1000 presentations of this stimulus is shown in
Figure 8A1 for the linear adaptive threshold model and in Figure 8A2 for
the random threshold model. In both cases, the response is sinusoidal with
an amplitude of approximately 3 spikes per second. Note that the phase is
shifted by approximately 90 degrees relative to the stimulus. This is because
the neurons are operating as differentiators at this stimulus frequency and
are thus responding to the slope of the stimulus rather than its absolute
magnitude. As can be seen by comparing Figures 8A1 and 8A2, there is no
obvious difference in response gain or variability in the poststimulus rate
histograms, nor is there any obvious difference in the short-term variability
of the individual spike trains showninthe dot raster displays.This similarity
in the response properties of the two models is not surprising, given that
they were tuned to have matching characteristics. Although the properties



Spike Train Regularization 1593

of the two models are similar on average, the detectability of the stimulus
on a trial-by-trial basis is dramatically different.

The stimulus does not change the mean number of spikes observed dur-
ing a trial. Rather, there is a slight increase in the spike count during the �rst
half of the trial and a slight decrease during the last half. For this particular
stimulus amplitude, there is a mean increase of one spike in the �rst half
of the trial and a mean decrease of one spike in the second half of the trial,
relative to the baseline level. To characterize the detectability of this small
change in the spike train statistics, we presented each neuron model with a
set of randomized trials, half of which contained a stimulus (see equation
6.8) and half of which did not. The detection task requires making a predic-
tion on a trial-by-trial basis of whether the stimulus was present, based on
the binary spike train data si for that trial. Since the mean number of spikes
does not change in the presence of the stimulus, this decision cannot be
based on the total spike count. To detect the stimulus optimally, the spike
train data are passed through a �lter with an impulse response matched
to the expected temporal pro�le of the signal (Kay, 1998). In this case, the
matched �lter m is well approximated by a single-cycle sinusoid with zero
phase shift,

m[n] D sin(2p n/D), (6.9)

and the output of the matched �lter zi on trial i is

zi D
DX

nD1

m[n]si[n]. (6.10)

Figures 8B1 and 8B2 show distributions of the matched �lter output for
the two models, in both the presence and absence of the stimulus. For both
models, the matched �lter output has a mean near zero when no stimulus is
present and a mean of approximately 1.5 when there is a stimulus. Although
the shift in the mean is approximately the same for both models, the width of
the distribution is signi�cantly narrower for the adaptive threshold model
(s.d. ¼ 0.6) than for the random threshold model (s.d. ¼ 3.4). This difference
in variability has a signi�cant impact on weak signal detectability.

The output of the matched �lter zi can be used as a test statistic for
binary hypothesis testing, in which the goal is to decide on a trial-by-trial
basis whether a stimulus has occurred based on the value of zi for that trial.
In this simple case, the problem can be handled using the classical Neyman-
Pearson approach (Kay, 1998). For each trial i, the �lter output zi is compared
with a threshold value zthresh. If the �lter output is greater than the threshold
value, the detector classi�es the trial as a stimulus trial. Depending on the
threshold level that is selected, there will be some detection probability
Pd of correctly classifying a trial that contained a stimulus as a stimulus
trial and some false alarm probability Pfa of misclassifying a trial without
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Figure 8: Comparison of signal detectability for the linear adaptive threshold
(A1–C1) and random threshold (A2–C2) models. The upper panels (A1, A2)
show the stimulus waveform (arbitrary units), dot raster displays of represen-
tative spike activity, and poststimulus rate histograms computed by averaging
spike activity over 1000 stimulus trials. A solid white line shows a sinusoidal
�t to the response. The middle panels (B1, B2) show histograms of the matched
�lter output for trials with and without a stimulus. The bottom panels (C1, C2)
illustrate the dramatic improvement in detectability for signals encoded by the
adaptive threshold model relative to the random threshold model, as measured
by the ROC curves. The dashed lines indicate chance-level performance.
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a stimulus as a stimulus trial. If the threshold value is moved lower to
improve detection ef�ciency, the false alarm probability also increases. This
trade-off between detection probability and false alarm probability can be
summarized by the receiver operating characteristic (ROC) of the detector,
which is a parametric plot of Pd versus Pfa as a function of threshold zthresh.
The ROC plots for the two neuron models are shown in Figures 8C1 and
8C2. The ability to detect reliably the presence of the stimulus is much better
for signals encoded by the adaptive threshold model. For example, if the
threshold is set at a level corresponding to a false alarm probability of 10%,
the probability of detecting the stimulus is 90% in spike trains arising from
the adaptive threshold model but only 19% in spike trains from the random
threshold model.

7 Conclusion

Spike trains thatappear irregular onshort timescales can exhibit longer-term
regularity in their �ring pattern. This regularity arises from the correlation
structureof the ISI sequenceand involves memory effects spanning multiple
interspike intervals (Ratnam & Nelson, 2000). This form of long-term spike
train regularization can arise from the refractory effects associated with a
dynamic spike threshold (Chacron et al., 2001). The functional relevance
of spike train regularity is supported by our experimental data on prey
capture behavior of weakly electric �sh. In our analysis of electrosensory
afferents (Ratnam & Nelson, 2000), we found that spike train regularity was
most pronounced on timescales of about 40 interspike intervals, which cor-
responds to a time period of about 175 msec. This timescale is well matched
to the relevant timescales for prey capture behavior in these animals (Nelson
& MacIver, 1999; MacIver, Sharabash, & Nelson, 2001). The timescale ap-
proximately matches the duration that the electrosensory image of a small
prey would activate a single electrosensory afferent �ber. We speculate that
spike train regularization on the timescale of tens to hundreds of millisec-
onds may play a key role in enhancing the detectability of natural sensory
signals, not just in the electrosensory system but in other systems as well.
Regularizing effects, although not as pronounced, have been observed on
similar timescales in auditoryafferents (Lowen & Teich, 1992). Whether such
effects exist in other systems is largely unknown because the appropriate
analyses of multiscale spike train variability have not been carried out.

The effects of spike train regularization can be most readily observed in
experimental data by analyzing the variance-to-mean ratio of the kth-order
interval distributions Ik. For a renewal process, which lacks correlations in
the interval sequence, the variance-to-mean ratio is constant for all interval
orders k. A decrease in the variance-to-mean with increasing k indicates
a regularizing effect, whereas an increase indicates that the spike train is
becoming more irregular. Asymptotically, similar relationships hold for the
analysis of spike count distributions, where the variance-to-mean ratio is
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referred to as the Fano factor (Fano, 1947; Gabbiani & Koch, 1998). However,
because the Fano factor decreases initially even for a renewal process, the
effects of intermediate-term spike train regularization can be overlooked in
a Fano factor analysis. Therefore, we recommend the analysis of kth-order
interval distributions as the best approach for characterizing spike train
variability on multiple timescales.

We have presented a simple model, derived from a more detailed model
by Chacron et al. (2000, 2001), that exhibits long-term spike train regulariza-
tion arising from refractory effects associated with a dynamic spike thresh-
old. Memory effects associated with the threshold dynamics give rise to
negative correlations in the ISI sequence; hence, this is a nonrenewal model
of spike generation. Many common neural models, including those based
on integrate-and-�re dynamics or inhomogeneous Poisson processes, do
not produce correlations in the ISI sequence, and hence are classi�ed as
renewal models. Recent models of electrosensory afferent dynamics, in-
cluding our own, fall into the category of renewal process models (Nelson
et al., 1997; Kreiman, Krahe, Metzner, Koch, & Gabbiani, 2000). While such
renewal models can accurately match the mean and CV of the �rst-order ISI
distribution, as well as the frequency response characteristics of the experi-
mental data, their failure to generate longer-term spike train regularization
may make them unsuitable for applications in which it is important to esti-
mate accurately detection thresholds or coding ef�ciency for weak sensory
stimuli. Given that refractory effects are commonplace in neural systems, we
suspect that this form of spike train regularization may be more widespread
than previously appreciated. Hence, nonrenewal models, such as the one
presented here, may have broad applicability when modeling the encoding
of weak signals in neuronal spike trains.
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