Model Systems in Neuroethology

Escape Behavior in the American Cockroach


American cockroachs, Periplaneta americana.

A cockroach can streak at 70-80 cm/s while rapidly changing direction to escape a predator or a well-aimed shoe (Delcomyn 1985). The escape response is initiated by esquisitively sensitive hairs responding to the movement of sudden air currents around the last segment of the body called the abdomen. In the photograph above, long antennae are the primary tactile and chemosensory organs coming off the head. The wings and legs are attached to the thorax, the medial body segment. Finally arising from the end of the abdomen, the pair of anal cerci are covered with wind-sensitive hairs. An object rapidly approaching the cockroach pushes before it an air wave that alerts the cockroach to run for its life.

Tree of Life: Blattaria


A cockroach will respond to a tactile or wind stimulus directed at the body by rapidly turning away from the stimulus and running. The escape response due to air currents on the anal cerci is well studied. The sensory cells, central nervous system component, and motor response during running has also been investigated. The sensation and response of the cockroach up to the time where running begins is the current focus. A roach will begin running between 8.2 to 70.2 ms after a puff of air is directed at the anal cerci (Roeder, 1948). Typically, the first response is to turn. Sensory hairs respond to air coming from a particular direction. Turning involves a specific shift in the positions of the legs informed by the sensory hairs to prepare to launch. Both tactile pokes and air currents from the same direction elicit the same specific type of turn which suggests a common motor pathway after the sensory response (Schaefer et al., 1994). After the course is set, running starts.

Neural Substrates

Circuit summary:
The nervous system promotes survival of the cockroach by quickly activating the running response in motor centers of the three thoracic ganglia. The sensory nerves in the hairs send axons which terminate on the giant interneurons (GI's) in the terminal abdominal ganglion (Dagan and Parnas 1970). Two equal sets of 7 large diameter GI's have the capacity to quickly relay the sensory information anterior along the ventral nerve cord through 5 intermediary abdominal ganglia to the thoracic ganglia (Westin et al., 1977). Intercellular stimulation of one of the 4 bilateral ventral GI's demonstrated that a running cockroach turned away from the GI' s conducting a relatively greater proportion of action potentials (Liebanthal et al., 1994). These results indicate that the GI 's direct the appropriate escape direction. Two types of escape behavior are elicited depending upon which GI' s are excited. The ventral GI' s mediate running, and the dorsal mediate flying and running (Fouad et al., 1996; Ritzmann et al., 1982). Tactile sensory neurons in the antennae and distributed over the surface of the body lead to pathways that consolidate at the thoracic locomotor centers (Fouad et al., 1996). As the turning behavior suggests, different sensory signals converge on the same motoneurons. The type A thoracic interneurons receive action potentials from the ventral giant interneurons and direct excitatory or inhibitory input on the motoneurons or interneurons controlling leg muscles (Schaefer et al., 1994). The supraesophageal and subesopahgeal ganglia provide over-all modulation of motor activity. The subesophageal ganglion is known to function in initiating motor programs in insects. The parasitic wasp, Ampulex compressa , meticulously stings a roach on the thorax and above the subesophageal ganglion before leading it to a death chamber where the wasp's offspring will consume it alive. The venom above the subesophageal ganglion eliminates the escape response sealing the cockroaches doom. (Fouad et al., 1996).


A diagram of the abdominal circuitry

1-4: Ventral giant neurons
P: Peripheral motion sensor
RC: Right Cercus
LC: Left Cercus
E: Excitatory synapse
I: Inhibitory synapse
U: Synapse type unknown
M: Abdomen midline axis

Selected References

Early classics:
Dagan D and Parnas I (1970) Giant Fibre and small fibre pathways involved in the evasive response of the American cockroach, Periplaneta americana. J exp Biol 52: 313-324.

Roeder KD (1948) Organization of the ascending giant fibre system in the cockroach, Periplaneta americana. J exp Biol 48: 545-567.

Ritzmann RE, Pollack AJ, Tobias, ML (1982) Flight activity mediated by intracellular stimulation of dorsal giant interneurones of the cockroach Periplaneta americana. J Comp Physiol 147: 313-322.

Westin J, Langberg JJ, and Camhi JM (1977) Responses of giant interneurons of the cockroach Periplaneta americana to wind puffs of different directions and velocities. J Comp Physiol 121: 307-324.

Some Recent Advances:
Fouad K, Liberstat F, and Rathmayer W (1996) Neuromodulation of the escape behavior of the cockroach Periplaneta americana by the venom of the parasitic wasp Ampulex compressa. J Comp Physiol A 178: 91-100.

Liebenthal E, Uhlmann O, and Camhi JM (1994) Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J Comp Physiol 174: 281-296.

Schaefer P, Kondagunta GV, Ritzman RE (1994) Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana. J exp Biol 190: 287-294.

Cockroach WWW Resources:

Cockroach Control Manual: blattidae
Cockroach World

This page prepared by:
Joseph Sullivan Oct 96